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5. FLOW IN PIPES 

 

5.3. Fully Developed Turbulent Flow 

 

Consider a long section of pipe that is initially filled with a fluid at rest. As the 

valve is opened to start the flow, the flow velocity and, hence, the Reynolds 

number increase from zero (no flow) to their maximum steady-state flow values, 

as is shown in Fig.5.10. Assume this transient process is slow enough so that 

unsteady effects are negligible (quasi-steady flow). For an initial time period the 

Reynolds number is small enough for laminar flow to occur. At some time the 

Reynolds number reaches 2100, and the flow begins its transition to turbulent 

conditions. Intermittent spots or bursts of turbulence appear. As the Reynolds 

number is increased, the entire flow field becomes turbulent. The flow remains 

turbulent as long as the Reynolds number exceeds approximately 4000. 

 
Figure 5.10. Transition from laminar to turbulent flow in a pipe. 

 

A typical trace of the axial component of velocity measured at a given location in 

the flow, u=u(t), is shown in Fig.5.11. Its irregular, random nature is the 

distinguishing feature of turbulent flow. The character of many of the important 

properties of the flow (pressure drop, heat transfer, etc.) depends strongly on the 

existence and nature of the turbulent fluctuations or randomness indicated. 



3 

 

 
Figure 5.11. The time-averaged, 𝒖 ,̅̅ ̅and fluctuating, 𝒖′  ,  description of a 

parameter for turbulent flow 

 

Turbulent flow shear stress is larger than laminar flow shear stress because of 

the irregular, random motion. The total shear stress in turbulent flow can be 

expressed as 

 
 

Note that if the flow is laminar 𝑢′ = 𝑣′ = 0, so that 𝑢′𝑣′̅̅ ̅̅ ̅̅ = 0 and the above 

equation reduces o the customary random molecule-motion induced laminar shear 

stress, 𝜏𝑙𝑎𝑚 = 𝜇𝑑�̅�/dy. For turbulent flow it is found that the turbulent shear 

stress, 𝜏𝑡𝑢𝑟𝑏 = −𝜌𝑢′𝑣′ ̅̅ ̅̅ ̅̅ is positive. Hence, the shear stress is greater in turbulent 

flow than in laminar flow.  

 

Considerable information concerning turbulent velocity profiles has been 

obtained through the use of dimensional analysis, experimentation, numerical 

simulations, and semiempirical theoretical efforts. As is indicated in Fig.5.12, 

fully developed turbulent flow in a pipe can be broken into three regions which 

are characterized by their distances from the wall: the viscous sublayer very near 

the pipe wall, the overlap region, and the outer turbulent layer throughout the 

center portion of the flow.  
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Figure 5.12. Typical structure of the turbulent velocity profile in a pipe 

 

Within the viscous sublayer the viscous shear stress is dominant compared with 

the turbulent (or Reynolds) stress, and the random, eddying nature of the flow is 

essentially absent. In the outer turbulent layer the Reynolds stress is dominant, 

and there is considerable mixing and randomness to the flow. The character of the 

flow within these two regions is entirely different. For example, within the viscous 

sublayer the fluid viscosity is an important parameter; the density is unimportant. 

In the outer layer the opposite is true. By a careful use of dimensional analysis 

arguments for the flow in each layer and by a matching of the results in the 

common overlap layer, it has been possible to obtain the following conclusions 

about the turbulent velocity profile in a smooth pipe. In the viscous sublayer the 

velocity profile can be written in dimensionless form as 

 

 
 

Where y=R-r is the distance measured from the wall, �̅� is the time-averaged x 

component of velocity, and 𝑢∗ = (
𝜏𝑤

𝜌
)1/2 is termed the friction velocity. Note that 

𝑢∗ is not an actual velocity of the fluid-it is merely a quantity that has dimensions 

of velocity.  
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This equation is known as the law of the wall, and it is found to satisfactorily 

correlate with experimental data for smooth surfaces for 0 ≤ 𝑦𝑢∗/𝜈 ≤ 5. The 

viscous sublayer is usually quite thin. For viscous sublayer can be calculated by  

 

0 ≤ 𝑦𝑢∗/𝜈 ≤ 5 

 

Thus, thickness of viscous sublayer: 𝑦 = 𝛿𝑠𝑢𝑏𝑙𝑎𝑦𝑒𝑟 =
5𝜈

𝑢∗
  This is valid very near 

the smooth wall. We conclude that the thickness of the viscous sublayer is 

proportional to the kinematic viscosity and inversely proportional to the average 

flow velocity. In other words, the viscous sublayer is suppressed and it gets thinner 

as the velocity (and thus the Reynolds number) increases. Consequently, the 

velocity profile becomes nearly flat and thus the velocity distribution becomes 

more uniform at very high Reynolds numbers. The quantity ν/u* has dimensions 

of length and is called the viscous length; it is used to nondimensionalize the 

distance y from the surface. 

 

Dimensional analysis arguments indicate that in the overlap region the velocity 

should vary as the logarithm of y. Thus, the following expression has been 

proposed: 

 

 
 

Where the constants 2.5 and 5.0 have been determined experimentally. As is 

indicated in the above Fig.5.12, for regions not too close to the smooth wall, but 

not all the way out to the pipe center, The last equation gives a reasonable 

correlation with the experimental data. Note that the horizontal scale is a 

logarithmic scale. This tends to exaggerate the size of the viscous sublayer relative 

to the remainder of the flow. The viscous sublayer is usually quite thin. Similar 

results can be obtained for turbulent flow past rough walls (5.13). 
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Figure 5.13. Flow in the viscous sublayer near rough and smooth walls. 

 

A number of other correlations exist for the velocity profile in turbulent pipe flow. 

In the central region (the outer turbulent layer) the expression  

 
𝑉𝑐 − �̅�

𝑢∗
= 2.5 ln(

𝑅

𝑦
) 

 

Where; Vc is the centerline velocity, is often suggested as a good correlation with 

experimental data. Another often-used (and relatively easy to use) correlation is 

the empirical power-law velocity profile 

 

  
 

In this representation, the value of n is a function of the Reynolds number, as is 

indicated in below Fig.5.14.  
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Figure 5.14. Exponent, n, for power-law velocity profiles. 

 

The one-seventh power-law velocity profile (n=7) is often used as a reasonable 

approximation for many practical flows. Typical turbulent velocity profiles based 

on this power-law representation are shown in the below Fig.5.15. 

 

 
Figure 5.15. Typical laminar flow and turbulent flow velocity profiles. 

 

Pressure Drop and Head Loss 

 

The overall head loss for the pipe system consists of the head loss due to viscous 

effects in the straight pipes, termed the major loss and denoted, hLmajor, and the 

head loss in the various pipe components, termed the minor loss and denoted, 

hLminor. That is, hL= hLmajor+ hLminor 

 



8 

 

The head loss designations of “major” and “minor” do not necessarily reflect the 

relative importance of each type of loss. For a pipe system that contains many 

components and a relatively short length of pipe, the minor loss may actually be 

larger than the major loss. 

 

𝒉𝑳𝒎𝒂𝒋𝒐𝒓 = 𝒇
𝑳

𝑫

𝑽𝟐

𝟐𝒈
  

 

This equation called the Darcy–Weisbach equation, is valid for any fully 

developed, steady, incompressible pipe flow—whether the pipe is horizontal or 

on a hill. The friction factor (f)  in fully developed turbulent pipe flow depends on 

the Reynolds number (𝑅𝑒 = 𝜌𝑉𝐷/𝜇) and the relative roughness, ɛ/D, which is 

the ratio of the mean height of roughness of the pipe to the pipe diameter and are 

not present in the laminar formulation because the two parameters ρ and  ɛ are not 

important in fully developed laminar pipe flow. Typical roughness values for 

various pipe surfaces are given in Table 5.2. 

 

Table 5.2. Rougness for new pipes 

 
The below figure shows the functional dependence of f on Re and ɛ/D and is called 

the Moody chart in honor of L. F. Moody, who, along with C. F. Colebrook, 

correlated the original data of Nikuradse in terms of the relative roughness of 

commercially available pipe materials. It should be noted that the values of ɛ/D 

do not necessarily correspond to the actual values obtained by a microscopic 

determination of the average height of the roughness of the surface (Fig 16). They 

do, however, provide the correct correlation for 𝑓 = ∅(𝑅𝑒,
ɛ

𝐷
). 
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Figure 5.16. Friction factor as a function of Reynolds number and relative 

roughness for round pipes-the Moody chart. 

 

Note that even for smooth pipes (ɛ = 0) the friction factor is not zero. That is, 

there is a head loss in any pipe, no matter how smooth the surface is made. This 

is a result of the no-slip boundary condition that requires any fluid to stick to any 

solid surface it flows over. There is always some microscopic surface roughness 

that produces the no-slip behavior (and thus) on the molecular level, even when 

the roughness is considerably less than the viscous sublayer thickness. Such pipes 

are called hydraulically smooth. 

 

The Moody chart covers an extremely wide range in flow parameters. The Moody 

chart, on the other hand, is universally valid for all steady, fully developed, 

incompressible pipe flows. The following equation from Colebrook is valid for 

the entire nonlaminar range of the Moody chart 

 
In fact, the Moody chart is a graphical representation of this equation, which is an 

empirical fit of the pipe flow pressure drop data. The above Equation is called the 

Colebrook formula. A difficulty with its use is that it is implicit in the dependence 

of f. That is, for given conditions (Re and ɛ/D), it is not possible to solve for f 

without some sort of iterative scheme. With the use of modern computers and 

calculators, such calculations are not difficult. A word of caution is in order 

concerning the use of the Moody chart or the equivalent Colebrook formula. 

Because of various inherent inaccuracies involved (uncertainty in the relative 

roughness, uncertainty in the experimental data used to produce the Moody chart, 

etc.), the use of several place accuracy in pipe flow problems is usually not 

justified. As a rule of thumb, a 10% accuracy is the best expected. It is possible to 

obtain an equation that adequately approximates the Colebrook_Moody chart 
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relationship but does not require an iterative scheme. For example, an alternate 

form, which is easier to use, is given by by S. E. Haaland in 1983 as 

 

 
 

Where one can solve for f explicitly. The results obtained from this relation are 

within 2 percent of those obtained from the Colebrook equation 

 

To avoid tedious iterations in head loss, flow rate, and diameter calculations, 

Swamee and Jain proposed the following explicit relations in 1976 that are 

accurate to within 2 percent of the Moody chart 

 

for 10−6 <
ɛ

𝐷
< 10−2 𝑎𝑛𝑑 3000 < 𝑅𝑒 < 3×108 

ℎ𝐿 = 1.07
𝑄2𝐿

𝑔𝐷5
{𝑙𝑛 [

ɛ

3.7𝐷
+ 4.62 (

𝜈𝐷

𝑄
)0.9]}

−2

 

 

for     𝑅𝑒 > 2000                                𝑄 = −0.965(
𝑔𝐷5ℎ𝐿

𝐿
)0.5 𝑙𝑛 [

ɛ

3.7𝐷
+ (

3.17𝜈2𝐿

𝑔𝐷3ℎ𝐿
)2]  

 

for 10−6 <
ɛ

𝐷
< 10−2 and 5000 < 𝑅𝑒 < 3×108 

𝐷 = 0.66 ⌈ɛ1.25 (
𝐿𝑄2

𝑔ℎ𝐿
)4.75 + 𝜈𝑄9.4(

𝐿

𝑔ℎ𝐿
)5.2⌉

0.04

 

 

If 𝑅𝑒 ≤ 105 and the pipe is hydraulically smooth (ɛ=0), we can take 

 f=0.316/Re 0.25. 

 

Note that all quantities are dimensional and the units simplify to the desired unit 

(for example, to m or ft in the last relation) when consistent units are used. Noting 

that the Moody chart is accurate to within 15 percent of experimental data, we 

should have no reservation in using these approximate relations in the design of 

piping systems. 

 

As discussed in the above section, the head loss in long, straight sections of pipe, 

the major losses, can be calculated by use of the friction factor obtained from 

either the Moody chart or the Colebrook equation. Most pipe systems, however, 

consist of considerably more than straight pipes. These additional components 

(valves, bends, tees, and the like) add to the overall head loss of the system. Such 

losses are generally termed minor losses, hLminor, with the corresponding head loss 
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denoted In this section we indicate how to determine the various minor losses that 

commonly occur in pipe systems. 

 

The friction loses for noncircular pipes can be calculated by Darcy–Weisbach 

equation. But The Reynolds number for flow in these pipes is based on the 

hydraulic diameter Dh=4R=4Ac /p, where R is the hydraulic radius (Hydraulic 

radius is defined as the ratio of the channel's cross-sectional area of the flow to its 

wetted perimeter). Ac is the cross-sectional area of the flow and p is its wetted 

perimeter (the length of the perimeter of the cross section in contact with the 

fluid). 

 

𝑅 =
𝐴𝑐

𝑝
               𝐷ℎ = 4

𝐴𝑐

𝑝
             𝑅𝑒 =

4𝑅𝑉

𝜈
=

𝐷ℎ𝑉

𝜈
 

 

The relative rougness is ɛ/4R.  

 

ℎ𝐿𝑚𝑎𝑗𝑜𝑟 = 𝑓
𝐿

𝐷ℎ

𝑉2

2𝑔
 

 

Example: The water is fully flowing through a duct that has a=25 cm and b=10 

cm. Determine hydraulic radius of the duct. If water is filled up to half of the pipe. 

What is hydraulic radius? 

 

 
 

Solution: If the duct is full of water. 

 

𝑅 =
𝐴𝑐

𝑝
=

0.25×0.10

2(0.25 + 0.10)
= 0.036 𝑚 

 

If water is filled up to half of the pipe: 

 

𝑅 =
𝐴𝑐

𝑝
=

0.25×0.10/2

2(0.25 + 0.10/2)
= 0.018 𝑚 

 

The head loss associated with flow through a valve is a common minor loss. The 

purpose of a valve is to provide a means to regulate the flowrate. This is 

accomplished by changing the geometry of the system (i.e., closing or opening 

http://en.wikipedia.org/wiki/Wetted_perimeter
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the valve alters the flow pattern through the valve), which in turn alters the losses 

associated with the flow through the valve. The flow resistance or head loss 

through the valve may be a significant portion of the resistance in the system. In 

fact, with the valve closed, the resistance to the flow is infinite—the fluid cannot 

flow. Such minör losses may be very important indeed. With the valve wide open 

the extra resistance due to the presence of the valve may or may not be negligible. 

 

The flow pattern through a typical component such as a valve is shown in 

Fig.5.17. It is not difficult to realize that a theoretical analysis to predict the details 

of such flows to obtain the head loss for these components is not, as yet, possible. 

Thus, the head loss information for essentially all components is given in 

dimensionless form and based on experimental data. The most common method 

used to determine these head losses or pressure drops is to specify the loss 

coefficient, KL.  

 

 
Figure 5.17. Flow through a valve. Losses due to pipe 

 

Minor losses are usually expressed in terms of the loss coefficient KL (Fig 5.18, 

5.19, 5.20 and 5.21) (also called the resistance coefficient), defined as 

 

ℎ𝐿𝑚𝑖𝑛𝑜𝑟 = 𝐾𝐿
𝑉2

2𝑔
   

 

where hL is the additional irreversible head loss in the piping system caused by 

insertion of the component, and is defined as ℎ𝐿 = ∆𝑃𝐿/𝜌𝑔.  The pressure drop 

across a component that has a loss coefficient of is equal to the dynamic pressure, 

ρV2/2. 

 

Minor losses are sometimes given in terms of an equivalent length, 𝑙𝑒𝑞 . In this 

terminology, the head loss through a component is given in terms of the equivalent 

length of pipe that would produce the same head loss as the component. That is, 

𝑙𝑒𝑞 = 𝐾𝐿

𝐷

𝑓
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where D and f are based on the pipe containing the component. The head loss of 

the pipe system is the same as that produced in a straight pipe whose length is 

equal to the pipes of the original system plus the sum of the additional equivalent 

lengths of all of the components of the system. Most pipe flow analyses, including 

those in this book, use the loss coefficient method rather than the equivalent length 

method to determine the minor losses. 

 
Figure 5.18. Entrance flow conditions and loss coefficient  

 
Figure 5.19. Exit flow conditions and loss coefficient. 

 

 
Figure 5.20. Loss coefficient for a sudden contraction 
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Figure 5.21. Loss coefficient for a sudden expansion 

 

The total head loss in a piping system is determined from hL= hLmajor+ hLminor 

 

ℎ𝐿 = 𝒇
𝑳

𝑫

𝑽𝟐

𝟐𝒈
+ 𝐾𝐿

𝑉2

2𝑔
     

 

Once the useful pump head is known, the mechanical power that needs to be 

delivered by the pump to the fluid and the electric power consumed by the motor 

of the pump for a specified flow rate are determined from 

 

�̇�𝑝 =
𝜌𝑔𝑄ℎ𝐿 

𝜂𝑝
  for pump 

 

�̇�𝑒 =
𝜌𝑔𝑄ℎ𝐿

𝜂𝑝𝜂𝑚
 for electrik motor 

 

Where; 𝜂𝑝 is the efficiency of the pump. 𝜂𝑚is the efficiency of the motor. 

 

5.4. Pipe Flowrate Measurement 

 

It is often necessary to determine experimentally the flowrate in a pipe. In before 

chapter we introduced various types of flow-measuring devices (venturi meter, 

nozzle meter, orifice meter, etc.) and discussed their operation under the 

assumption that viscous effects were not important. In this section we will indicate 

how to account for the ever-present viscous effects in these flow meters. We will 

also indicate other types of commonly used flow meters. Orifice, nozzle and 

Venturi meters involve the concept “high velocity gives low pressure.” 

 

5.4.1 Pipe Flowrate Meters 

 

Three of the most common devices used to measure the instantaneous flowrate in 

pipes are the orifice meter, the nozzle meter, and the venturi meter. Each of these 
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meters operates on the principle that a decrease in flow area in a pipe causes an 

increase in velocity that is accompanied by a decrease in pressure. Correlation of 

the pressure difference with the velocity provides a means of measuring the 

flowrate. In the absence of viscous effects and under the assumption of a 

horizontal pipe, application of the Bernoulli equation between points (1) and (2) 

shown in Fig.5.22 gave 

 

 
 

Where; 𝛽 =
𝐷2

𝐷1
. Based on the results of the previous sections of this chapter, we 

anticipate that there is a head loss between (1) and (2) so that the governing 

equations become  

 

   
 

 
 

The ideal situation has hL=0 and results in above equation. The difficulty in 

including the head loss is that there is no accurate expression for it. The net result 

is that empirical coefficients are used in the flowrate equations to account for the 

complex real-world effects brought on by the nonzero viscosity. The coefficients 

are discussed in this section. 

 

 
 

Figure 5.22. Typical pipe flow meter geometry. 

 

A typical orifice meter is constructed by inserting between two flanges of a pipe 

a flat plate with a hole, as shown in the below Fig.5.23.  
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Figure 5.23. Typical orifice meter construction. 

 

The pressure at point (2) within the vena contracta is less than that at point (1). 

Nonideal effects occur for two reasons. First, the vena contracta area, A2 is less 

than the area of the hole, A0, by an unknown amount. Thus, A2=CcA0, where Cc 

is the contraction coefficient (Cc<1). Second, the swirling flow and turbulent 

motion near the orifice plate introduce a head loss that cannot be calculated 

theoretically. Thus, an orifice discharge coefficient, C0, is used to take these 

effects into account. That is, 

 

 
 

Where; 𝐴0 =
𝜋𝑑2

4
 is the area of the hole in the orifice plate. The value of C0 is a 

function of 𝛽 =
𝑑

𝐷
 and the Reynolds number 𝑅𝑒 = 𝜌𝑉𝐷/𝜇, where 𝑉 =

𝑄

𝐴1
. Typical 

values of C0 are given in the below Fig. 5.24. The experimentally determined data 

for orifice discharge coefficient for 0.25 < 𝛽 < 0.75 𝑎𝑛𝑑 104 < 𝑅𝑒 < 107 is 

expressed as 

 
For flows with high Reynolds numbers (Re ≥ 30.000), the value of C0 can be taken 

to be C0=0.61 for orifices. 
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Figure 5.24. Orifice meter discharge coefficient 

 

For a given value of C0, the flowrate is proportional to the square root of the 

pressure diffrence. Note that the value of C0  depends on the specific construction 

of the orifice meter (i.e., the placement of the pressure taps, whether the orifice 

plate edge is square or beveled, etc.). Very precise conditions governing the 

construction of standard orifice meters have been established to provide the 

greatest accuracy possible.  

 

Another type of pipe flow meter that is based on the same principles used in the 

orifice meter is the nozzle meter, three variations of which are shown in the below 

Fig.5.25.  

 

 
Figure 5.25. Typical nozzle meter construction. 

 

This device uses a contoured nozzle (typically placed between flanges of pipe 

sections) rather than a simple (and less expensive) plate with a hole as in an orifice 
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meter. The resulting flow pattern for the nozzle meter is closer to ideal than the 

orifice meter flow. There is only a slight vena contracta and the secondary flow 

separation is less severe, but there still are viscous effects. These are accounted 

for by use of the nozzle discharge coefficient, Cn, where 

 

 
 

With 𝐴𝑛 =
𝜋𝑑2

4
. As with the orifice meter, the value of Cn is a function of the 

diameter rato, with 𝐴𝑛 =
𝜋𝑑2

4
.  And the Reynolds number, 𝑅𝑒 =

𝜌𝑉𝐷

𝜇
. Typical 

values obtained from experiments are shown in the below Fig.5.26. Again, precise 

values of Cn depend on the specific details of the nozzle design. Note that Cn > C0 

the nozzle meter is more efficient (less energy dissipated) than the orifice meter. 

Cn for 0.25 < 𝛽 < 0.75 𝑎𝑛𝑑 104 < 𝑅𝑒 < 107 can be calculated from the 

following equation. 

 

 
For flows with high Reynolds numbers (Re≥ 30.000), the value of Cn can be 

taken to be Cn=0.96 for flow nozzles. 

 

 
Figure 5.26. Nozzle meter discharge coefficient 

 

The most precise and most expensive of the three obstruction-type flow meters is 

the Venturimeter shown in Fig.5.27.  
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Figure 5.27. Typical venturi meter construction. 

 

Although the operating principle for this device is the same as for the orifice or 

nozzle meters, the geometry of the venturi meter is designed to reduce head losses 

to a minimum. This is accomplished by providing a relatively streamlined 

contraction (which eliminates separation ahead of the throat) and a very gradual 

expansion downstream of the throat (which eliminates separation in this 

decelerating portion of the device). Most of the head loss that occurs in a well-

designed venturi meter is due to friction losses along the walls rather than losses 

associated with separated flows and the inefficient mixing motion that 

accompanies such flow. Thus, the flowrate through a Venturi meter is given by  

 

 
 

Where; 𝐴𝑇 =
𝜋𝑑2

4
 is the throat area. The range of values of Cv, the Venturi 

discharge coefficient, is given in the following Fig. 5.28.  

 

 
 

Figure 5.28. Venturi meter discharge coefficient. 

 

The throat-to-pipe diameter ratio (𝛽 =
𝑑

𝐷
), the Reynolds number, and the shape 

of the converging and diverging sections of the meter are among the parameters 

that affect the value of Cv. 
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Owing to its streamlined design, the discharge coefficients of Venturi meters are 

very high, ranging between 0.95 and 0.99 (the higher values are for the higher 

Reynolds numbers) for most flows. In the absence of specific data, we can take 

Cv=0.98 for Venturi meters. Also, the Reynolds number depends on the flow 

velocity, which is not known a priori. Therefore, the solution is iterative in nature 

when curve-fit correlations are used for Cv. 

 

5.5. Chapter Summary and Study Guide 

 

This chapter discussed the flow of a viscous fluid in a pipe. General characteristics 

of laminar, turbulent, fully developed, and entrance flows are considered. 

Poiseuille’s equation is obtained to describe the relationship among the various 

parameters for fully developed laminar flow. 

 

Some of the important equations in this chapter are given below. 
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The design and analysis of piping systems involve the determination of the head 

loss, flow rate, or the pipe diameter. Tedious iterations in these calculations can 

be avoided by the approximate Swamee–Jain formulas expressed as 

 

  for 10−6 <
ɛ

𝐷
< 10−2 𝑎𝑛𝑑 3000 < 𝑅𝑒 < 3×108 

 

ℎ𝐿 = 1.07
𝑄2𝐿

𝑔𝐷5
{𝑙𝑛 [

ɛ

3.7𝐷
+ 4.62 (

𝜈𝐷

𝑄
)0.9]}

−2

 

 

    for         𝑅𝑒 > 2000         

                                            𝑄 = −0.965(
𝑔𝐷5ℎ𝐿

𝐿
)0.5 𝑙𝑛 [

ɛ

3.7𝐷
+ (

3.17𝜈2𝐿

𝑔𝐷3ℎ𝐿
)2]  

 

 

for 10−6 <
ɛ

𝐷
< 10−2 and 5000 < 𝑅𝑒 < 3×108 

 

𝐷 = 0.66 ⌈ɛ1.25 (
𝐿𝑄2

𝑔ℎ𝐿
)4.75 + 𝜈𝑄9.4(

𝐿

𝑔ℎ𝐿
)5.2⌉

0.04

 

 

 

 

 

 

 

 

 

 

 

 

 


