Genetic mechanisms in the etiopathogenesis of sporadic and familial cancers

MED 213

The Genetic Bases of Cancer

Oncogenes Tumor suppressor genes Repair genes

Environmental mutagens (biological, chemical, physical agents)

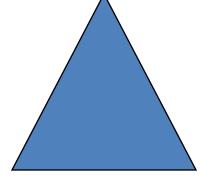
Genetic mechanisms in etiopathogenesis of sporadic and familial cancers

Pathways in Carcinogenesis

Epigenetics and Cancer

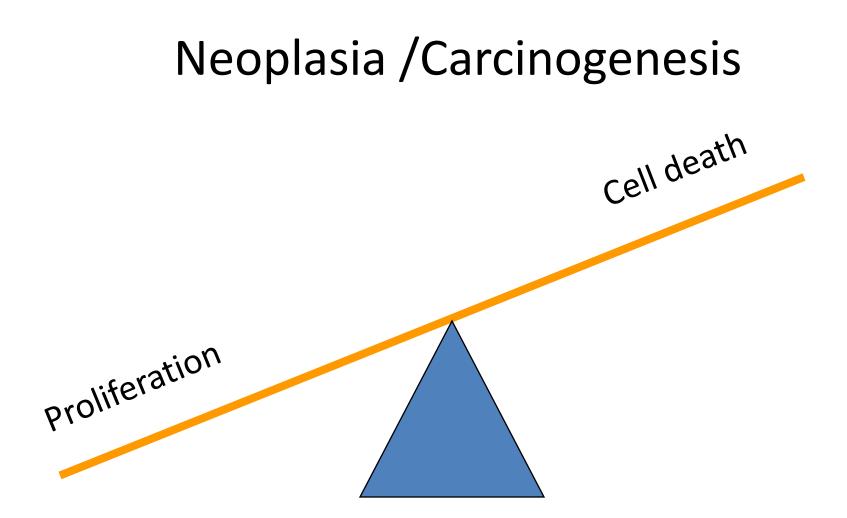
Molecular targets for Cancer Therapy

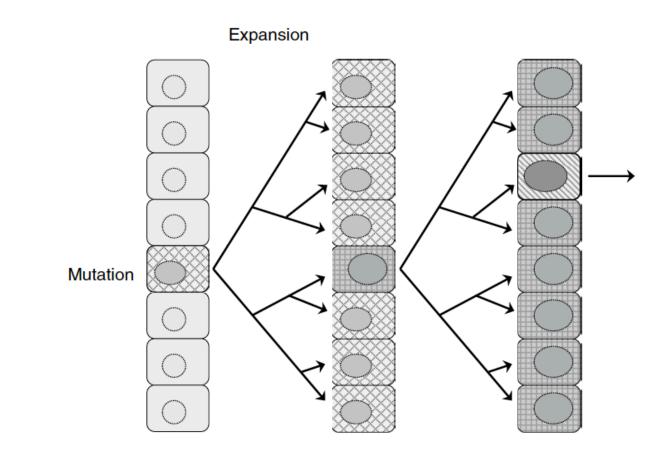
The Cancer Genetics


- Cancer is caused by genetic alterations
- Genetic alterations can be inherited and/or acquired
- Progression is clonal, initiates in an individual cell
- Carcinogenesis is a process that alters the genomic stability and functionality of the cell
- Especially related to cell proliferation mechanisms
- Genetic alterations build up by time
- Positive correlation between age and incidence
- Individuals may be susceptible to cancer formation
- These susceptibilities form the bases of both familial and heritable cancer cases

Proliferation

Cell Death

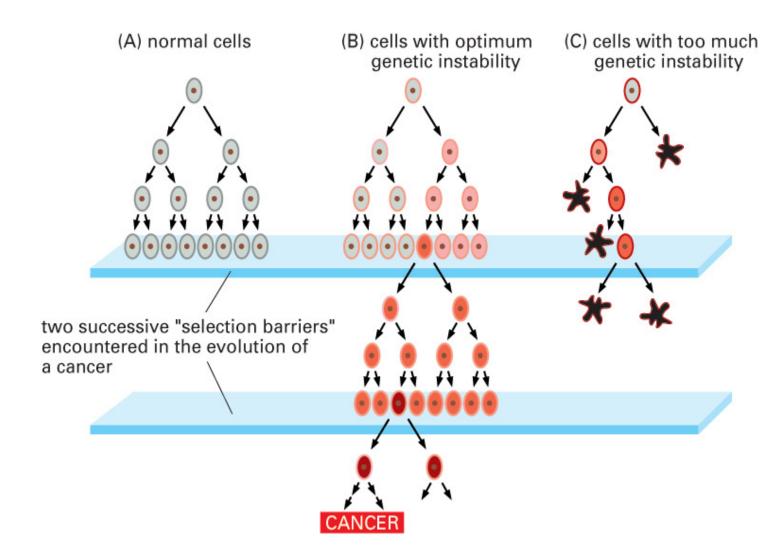

Cell cycle control

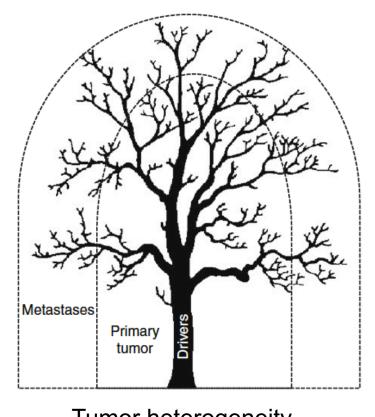

Proto-onkogenes Telomerases Oncomirs

Apoptosis

Tumor suppressor genes Oncomirs

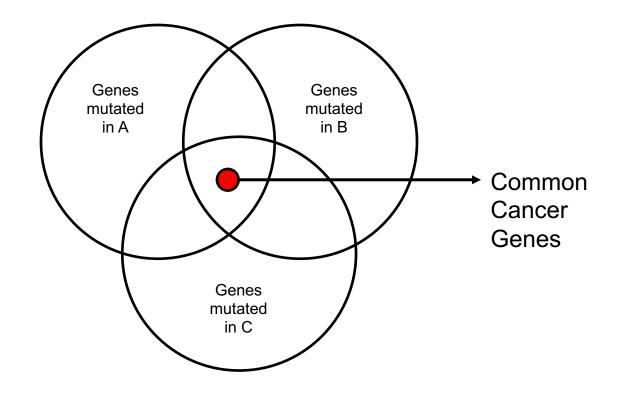
Clonal evolution of a neoplasm.


A single cell in a normal tissue acquires an alteration that confers a growth advantage.


That cell divides and thus expands over time into a distinct clone.

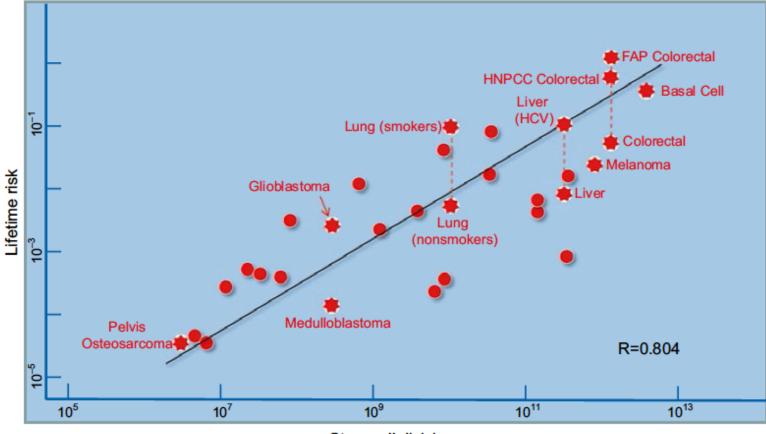
A cell within that clone acquires a second mutation that provides an additional growth advantage.

A tumor results from iterative rounds of mutation and clonal expansion.


Tumor formation requires optimum genetic stability of the cell

Tumor heterogeneity

- Cancers evolve from a clonal population of proliferative cells that becomes increasingly more genetically heterogeneous with each successive generation.
- Drivers feed the growth of every part of the tree. The branches are somatic mutations that arise later, as a product of cell division, define distinct subpopulations within the tumor.
- The majority of these mutations are passengers. Metastases develop from founder cells that differ substantially from one another, and therefore exhibit a large degree of intermetastatic genetic heterogeneity.



Common and unique drivers of cancers from the same tissue:

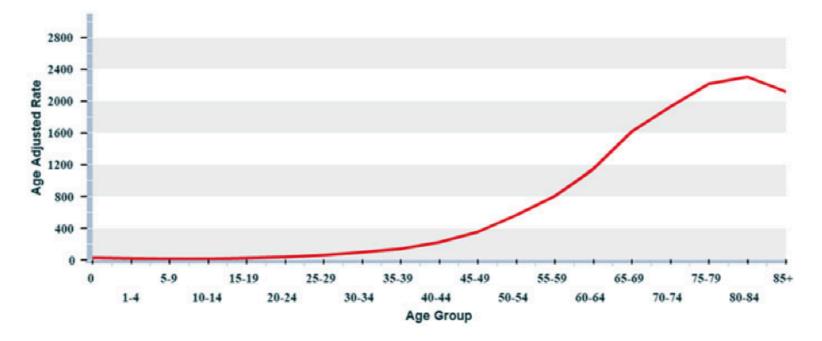
The driver mutations found in cancers are diverse and often tissue-specific.

In this example, comparison of the set of genes mutated in tumors A, B and C shows that some driver mutations are unique to each tumor in which they occur, but there is also significant overlap.

A proportion of mutated genes are common to all three tumors; these represent highly prevalent cancer genes

Stem cell divisions

Cancers arise more frequently in tissues that are highly proliferative.


The lifetime risk of cancer in any given tissue is positively correlated with the total number of stem cell divisions that occur in that tissue.

The linearity of this relationship (R close to 1) supports a large role for replicative mutations in human cancers.

This study examined 31 types of cancer, from diverse tissues.

Common tumors of the breast and prostate were excluded from this analysis because of uncertainty in the absolute number of stem cells in these tissues.

INCREASE of CANCER INCIDENCE BY AGE

Fig. 5.2 Cancer incidence, by age group. The overall incidence of cancer at all sites rises with increasing age and peaks around age 80. Incidence rates include both sexes and all races, are per 100,000 and are from surveys dating from 1975 to 2012, age-adjusted to the 2000 US population. Primary data are from the Surveillance, Epidemiology and End results program (SEER), of the National Cancer Institute

Progression of carcinogenesis from zygote to somatic cells

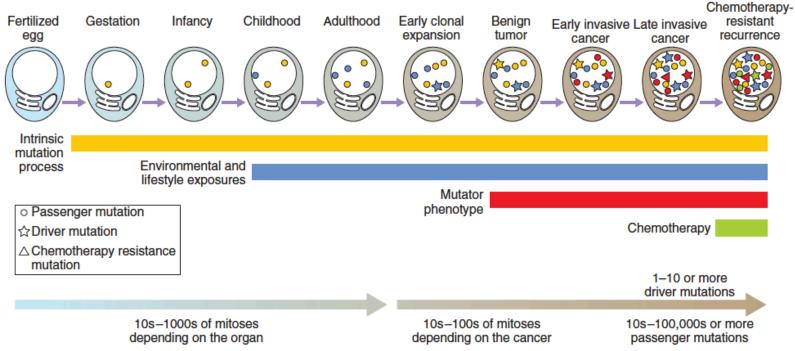
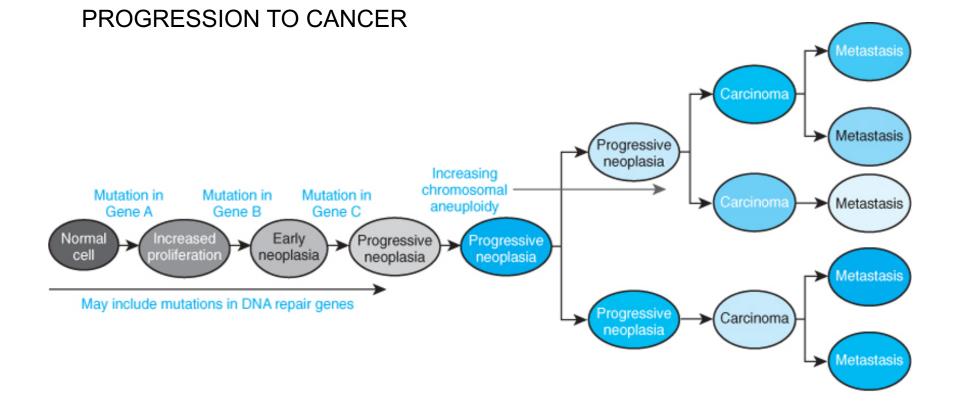
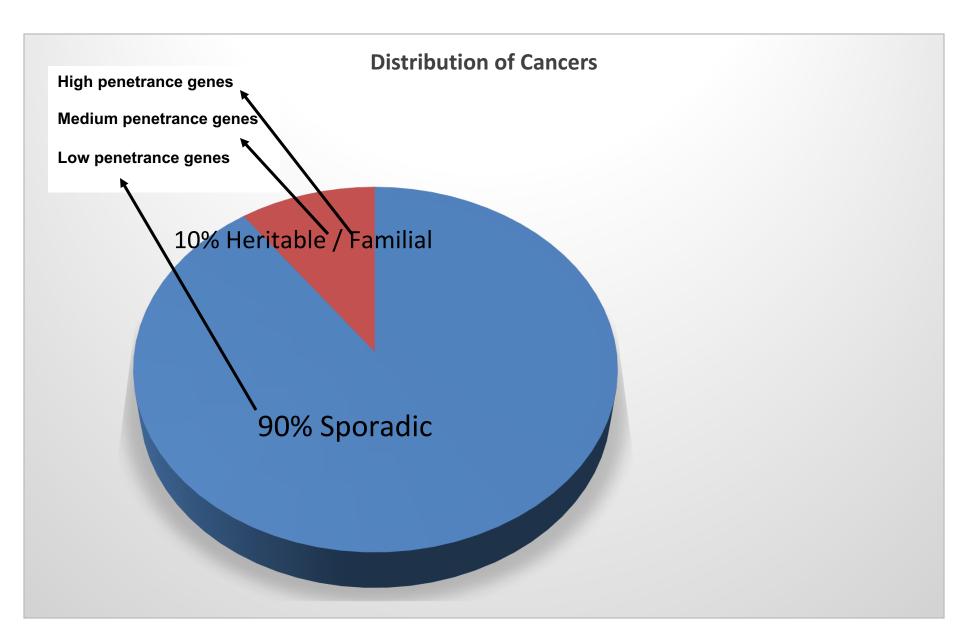




FIGURE 14.1 The lineage of mitotic cell divisions from the fertilized egg to a single cell within a cancer showing the timing of the somatic mutations acquired by the cancer cell and the processes that contribute to them. Mutations may be acquired through both intrinsic cell division processes and as a result of mutagens. DNA repair defects may contribute, but driver mutations will cause clonal expansion, with passenger mutations having little overall effect. Relapse following chemotherapy may be due to resistant mutations predating treatment. (*Reproduced with permission from Stratton MR, Campbell PJ, Futreal PA 2009 The cancer genome. Nature 458:719–24.*)

Mendelian Sporadic Normal gene Germline mutation Somatic mutation Somatic mutation Somatic mutation Single tumors Multiple tumors Unilateral Bilateral Later onset Early onset

© Elsevier. Nussbaum et al: Thompson and Thompson's Genetics in Medicine 7e - www.studentconsult.com

Syndrome	MIM# ^a	Gene(s)	Population incidence	<i>Penetrance</i> ^b
Ataxia-telangiectasia	208900	ATM	1/30 000 to 1/100 000	100%
Birt-Hogg-Dube	135150	BHD	Unknown, rare	Unknown, but reduced
Bloom syndrome	210900	BLM	Unknown, rare	100%
Carney complex	160980	PRKRA1A	Rare	Unknown
Cowden syndrome	158350	PTEN	1/200 000	90–95%
Familial adenomatous polyposis	175100	APC	1/5000 to 1/10 000	100%
Familial malignant melanoma	155600	CDKN2A (TP16), CMM1, CDK4	Unknown	100%
Familial paraganglioma syndrome	168000, 185470	SDHD, SDHB	Rare	Unknown
Fanconi anaemia	227650	FANCA, FANCB, FANCC, FANCD, FANCE, FANCF, FANCG, FANCL	1/360 000	100%
Hereditary breast–ovarian cancer syndrome	113705, 600185	BRCA1 and BRCA2	1/500 to 1/1000	Up to 85%
Hereditary diffuse gastric cancer	137215	CDH1	Unknown, rare	90%
Hereditary leiomyomatosis and renal cell carcinoma	605839	FH	Unknown, rare	Unknown, but reduced
Hereditary nonpolyposis colon cancer	114500	MLH1, MSH2, MSH6, PMS1, PMS2	1 in 400	90%
Hereditary papillary renal cell carcinoma	605074	MET	Unknown	Unknown, but reduced
Hyperparathyroidism–jaw tumour syndrome	145001	HPRT2	Unknown, rare	90%
Juvenile polyposis syndrome	174900	MADH4 (SMAD4), BMPR1A	1/100 000	90–100%

~

and renal cell carcinoma				
Hereditary nonpolyposis colon cancer	114500	MLH1, MSH2, MSH6, PMS1, PMS2	1 in 400	90%
Hereditary papillary renal cell carcinoma	605074	MET	Unknown	Unknown, but reduced
Hyperparathyroidism–jaw tumour syndrome	145001	HPRT2	Unknown, rare	90%
Juvenile polyposis syndrome	174900	MADH4 (SMAD4), BMPR1A	1/100 000	90–100%
Li–Fraumeni syndrome	151623	TP53	Rare	90–95%
Multiple endocrine neoplasia type 1	131100	MEN1	1/100 000	95%
Multiple endocrine neoplasia type 2	171400, 162300	RET	1/30 000	70–100% ^c
Neurofibromatosis type 1	162200	NF1	1/3000	100%
Neurofibromatosis type 2	101000	NF2	1/40 000	100%
Nevoid basal cell carcinoma syndrome	109400	PTC	1/57 000	90%
Nijmegen breakage syndrome	251260	NBSI	Rare	100%
Peutz–Jeghers syndrome (PJS)	175200	LKB1 (STK11)	1/200 000	95–100%
Retinoblastoma, hereditary (RB)	180200	RB	1/13 500 to 1/25 000	90%
Rothmund–Thomson syndrome	268400	RECQL4	Rare	100%
Tuberous sclerosis (TS)	191100, 191092	TSC1, TSC2	1/30 000	95–100%
von Hippel–Lindau (VHL)	193300	VHL	1/36 000	90–95%
Xeroderma pigmentosum	278700, 133510, 278720, 278730, 278740, 278760, 278780	XPA, ERCC3, XPC, ERCC2, XPE, ERCC4, ERCC5	1/1 000 000 ^d	100%

Indications of familial or inherited cancers:

- Two or more individuals in a family with same type of cancer
- Early onset cancer diagnosis in a family with multiple cases
- Same individual with more than one primary tumors
- Bilateral (symmetric organs) Existance of
- Existance of cases related to familial/inherited cancer syndromes
- A family with increased incedence of cancer cases relative to general population
- Cancer cases with congenital malformations
- Autosomal dominant inheritance

Pathways effected in Carcinogenesis

Cancer related genes effect the pathways at three basic cellular process

- 1. Cell fate
- 2. Cell viability
- 3. Genomic stability / genome maintenance

Cancer pathways are determined by protein-protein interactions. These lead to four outcomes

- 1. Structural changes
- 2. Functional changes
- 3. Spatial changes
- 4. Molecule life cycle