Discounted-cash-flow calculations based on continuous interest compounding and continuous cash flow

Example 2 Using the discount factors for continuous interest and continuous cash flow presented in Tables 5 to 8 of Chapter 7, determine the continuous discounted-cash-flow rate of return r for the example presented in the preceding section where yearly cash flow is continuous. The data follow.

- Initial tied-capital investment = \$100,000
- Working-capital investment = \$10,000
- Service life = 5 years
- Salvage value at end of service life = \$10,000

TABLE3
Discount and compounding factors for continuous interest and cash flows?

r as percent	1%	5%	10%	15%	20%	25%	30%	40%
Discount factors to give present worths for				Secon W				
cash flows which								
(a) Occur in an instant at a point in								
time after the reference point	(D. 000	0.054	0.005	0.004	0.010	0.779	0.741	0.070
n = 1	D.990	0.951	0.905	0.861	0.819		0.741	0.670
P.W. 2	3.980	0.905	0.819	0.741	3.670 3.540	0.606	0.549	0.449
. a 3	3.970	0.861	0.741	0.638	B.549	0.472	0.407	0.301
0 /	3.961	0.819	0.670	0.549	B.449	0.368	0.301	0.202
5	3.951	0.779	0.606	0.472	13.368	0.286	0.223	0.135
(1) 10	3.905	0.606	0.368	0.223	(3.135	0.082	0.050	0.018
$1.0\left(\frac{1}{e^{rn}}\right) = F_a \qquad \qquad 15$	0.861	0.472	0.223	0.105	D.050	0.024	0.011	0.002
(e ^{rn}) 20	0.819	0.368	0.135	0.050	D.018	0.007	0.002	
25	0.779	0.286	0.082	0.024	D.007	0.002	0.001	
(b) Occur uniformly over one-year	(6)							
periods after the reference point	<u> </u>			0.000	0.006			
n = 1. 1st year	0 995	0.975	0.952	0.929	0.906	0.685	0.864	0.824
2. 2nd year	0.985	0.928	0.861	0.799	0.742	0.689	0.640	0.552
0 n-l n 3. 3rd year	0.975	0.883	0.779	0.688	0.608	0.537	0.474	0.370
4. 4th year	0.966	0.840		0.592	,0.497	0.418	0.351	0.248
$1.0\left(\frac{e^r-1}{r}\right)e^{-rn}=F_b \qquad \qquad 5. \text{5th year}$	0.956	0.799	0.638	0.510	0.407	0.326	0.260	0.166
" / " - " - " ·	8	H H2				21.100		8

Example 2

Solution. The following tabulation shows the final result of the trial-and-error solution using the factors F_a , and F_b from Tables 5 and 6 in Chap. 7:

Year		Trial for			
	Estimated	Discount			
	continuous cash flow to project, \$	F _b (from Table 6, Chap. 7)	F _a (from Table 5, Chap. 7)	Present value,	
0	(110,000)				
5886 B2	In an instant	12-11239-219-2192		06.050	
O-1	30,000	0.8954		26,850	
1-2	31,000	0.7151		22,200	
2-3	36,000	0.5710		20,550	
34	40,000	0.4560		18,250	
4 - 5	43,000	0.3648		15,650	
5	+20,000		0.3246	6,500	
	In an instant				
				Total 110,000	

Trial is satisfactory

NET PRESENT WORTH

Net present worth (or net present value or venture worth), substitutes the cost of capital at an interest rate i for the discounted-cash-flow rate of return.

The **net present worth** of the project is then the difference between the present value of the annual cash flows and the initial required investment.

NET PRESENT WORTH

To illustrate the method for determining net present worth, consider the example presented in Table 1 for the case where the value of capital to the company is at an interest rate of 15 percent.

Under these conditions, the present value of the cash flows is \$127,000 and the initial investment is \$110,000. Thus, the net present worth of the project is:

\$127,000 - \$110,000 = \$17,000

TABLE 1
Computation of discounted-cash-flow rate of return

		Trial for = 0.15		Trial for i 🖚 0.20		Trial for $i = 0.25$		Trial for $i = 0.207†$	
Year (n')	Estimated cash Row to project,	Discount actor, 1 (1 + i) ^{n'}	Present value,	Discount factor, 1 (1 + i)*	Present value,	Discount actor, 1 (1 + i) ⁿ	Present value,	Discount factor, 1 (1 + i)n	Present value, \$
0 1 2 3 4 5	(110,000) 30,000 31,000 36,000 40,000 (43,000 +20,000 Total	0.8696 0.7561 0.6575 0.5718 0.4971	26.100 23.400 23.300 22.900 31.300	0.8333 0.6944 0.5787 0.4623 0.4019	25,000 21,500 20,700 19,300 25,300	0.8000 0.6400 0.5120 0.4096 0.3277	24,000 19,800 18,400 16,400 20,600	0.829 0.687 0.570 0.472 0.391	24,900 21,200 20,500 18,800 24,600
Ratio	total prese	530	1.155	_	1.016		0.902		1.000
							Tris satisfa	al is	