Discounted-cash-flow calculations based on continuous interest compounding and continuous cash flow

Example 2 Using the discount factors for continuous interest and continuous cash flow presented in Tables 5 to 8 of Chapter 7, determine the continuous discounted-cash-flow rate of return r for the example presented in the preceding section where yearly cash flow is continuous. The data follow.
-Initial tied-capital investment $=\$ 100,000$
-Working-capital investment $=\$ 10,000$
-Service life = 5 years
Salvage value at end of service life $=\$ 10,000$

TABLE3

Discount and compounding factors for continuous interest and cash flows?

r as percent	1\%	5\%	10\%	15\%	20\%	25\%	30\%	40\%	
Discount factors to give present worths for cash flows which (a) Occur in an instant at a point in time after the reference point $n=1$	D. 990	0.951	0.905	0.861	0.819	0.779	0.741	0.670	
02	B.980	0.905	0.819	0.741	13.670	0.606	0.549	0.449	
,	1.970	0.861	0.741	0.638	10.549	0.472	0.407	0.301	
t - . . -	1.961	0.819	0.670	0.549	B.449	0.368	0.301	0.202	
$0 \quad \pi$	B.951	0.779	0.606	0.472	B. 368	0.286	0.223	0.135	
$(1) 10$	13.905	0.606	0.368	0.223	B. 135	0.082	0.050	0.018	
$1.0\left(\frac{1}{-m}\right)=F_{a} \quad 15$	0.861	0.472	0.223	0.105	D. 050	0.024	0.011	0.002	
$\left(e^{\text {rn }}\right.$) 20	10.819	0.368	0.135	0.050	ID. 018	0.007	0.002		
25	0.779	0.286	0.082	0.024	D. 007	0.002	0.001		
(b) Occur uniformly over one-year periods after the reference point									
P. 1 . $n=1$. 1st year	0995	0.975	0.952	0.929	0.906	0.685	0.864	0.824	
L_-- V\|l		0.985	0.928 ${ }^{\text {i }}$	0.861	0.799	0.742	0.689	0.640	0.552
0 n-1 n 3. 3rd year	0.975	0.883i	0.779	0.688	0.608	0.537	0.474	0.370	
		0.840	0.705		0.497	0.418	0.351	0.248	
$1.0\left(\frac{e^{r}-1}{r}\right) e^{-r n}=F_{b} \quad$ 5. 5th year	0.956	0.7991	0.638	0.510	0.407	0.326	0.260	0.166	

Example 2

Solution. The following tabulation shows the final result of the trial-and-error solution using the factors F_{a}, and F_{b} from Tables 5 and 6 in Chap. 7:

Year	Estimated continuous cash flow to project, \$	Trial for $\mathrm{r}=0.225$		Present value, \$
		Discount	factor	
		F_{b} (from Table 6, Chap. 7)	$\begin{aligned} & \boldsymbol{F}_{\sigma} \\ & \text { (from Table } \\ & 5, \text { Chap. 7) } \end{aligned}$	
0	(110,000) In an instant			
O-1	30,000	0.8954		26,850
1-2	31,000	0.7151		22,200
2-3	36,000	0.5710		20,550
34	40,000	0.4560		18,250
$4-5$ 5	$\begin{array}{r} 43,000 \\ +20,000 \end{array}$	0.3648	0.3246	$\begin{gathered} 15,650 \\ 6,500 \end{gathered}$
5	In an instant		0.3246	
				Total 110,004

Trial is satisfactory

NET PRESENT WORTH

Net present worth (or net present value or venture worth), substitutes the cost of capital at an interest rate \mathbf{i} for the discounted-cash-flow rate of return.

The net present worth of the project is then the difference between the present value of the annual cash flows and the initial required investment.

NET PRESENT WORTH

To illustrate the method for determining net present worth, consider the example presented in Table 1 for the case where the value of capital to the company is at an interest rate of 15 percent.

Under these conditions, the present value of the cash flows is $\$ 127,000$ and the initial investment is $\$ 110,000$. Thus, the net present worth of the project is:

$$
\$ 127,000-\$ 110,000=\$ 17,000
$$

