BME449 Tissue Engineering

Lecture #3 Scaffolds

Doç. Dr. Pınar Yılgör Huri phuri@ankara.edu.tr

Ankara University Department of Biomedical Engineering

Scaffold Properties Porosity and Interconnectivity

Porosity Characterization

• Porosimetry:

•Force gas or liquid into holes, response is average pore size

•Care must be taken to avoid deformation

•Suitable microscopy may be used image surfaces

Scaffold Properties Biodegradability

Test Methods

In vitro:

<u>Under physiological conditions:</u> pH=7.4, T= 37C, with/without shaking in NaCl solution or PBS or cell culture medium
Can performed with the presence of some enzyme (lipase, collagenase, amylase, etc.

In vivo:

•Preformed by implanting the scaffold in the defect area

Scaffold Properties Mechanical Properties

Test Methods:

- Depends on the final use.
- Tensile, compressive, torsion, bending testing

Scaffold Properties THE SURFACE

METHODS:

WET CHEMISTRY IN SURFACE MODIFICATION

Wet chemical etching

Oxidation by wet surface modification methods

Hydrolysis

PHYSICAL METHODS FOR SURFACE ALTERNATIONS

Plasma activation and modification

UV-irradiation

 β - and γ -irradiation

GRAFTING

PLASMA MODIFICATION

<u>Plasma reactors</u> are varying in size from 1L to several cubic meters but all of them typically consists of a gaseous inlet and outlet, a reactor vessel, a vacuum pump, and a matching box.

Plasma surface modification methods:

- Plasma sputtering and etching
- ➢Plasma grafting
- ➢Plasma functionalization
- ➢Dual plasma deposition
- ➢Plasma polymerization

Scaffold Properties

THE SURFACE

Characterization Method	Abbr.	Analyzed depth	Resolution	Cost
Contact angle measurements		3-20 Å	1 mm	Moderate
Scanning Tunneling Microscopy	STM	5 Å	1 Å	Expensive
Scanning Electron Microscopy	SEM	5 Å	40 Å	Expensive
X-Ray Photoelectron Spectroscopy	XPS/ ESCA	10-250 Å	10-150 µm	Very expensive
Auger Electron Spectroscopy	AES	50-100 Å	100 Å	Very expensive
Fourier Transform Infrared Spectroscopy - Attenuated Total Reflectance	FTIR- ATR	1-5 µm	10 µm	Expensive
Atomic Force Microscopy	AFM	Different	Very high	Expensive