
 CHM0308 INORGANIC CHEMISTRY II

MOLECULAR ORBITAL THEORY OF COORDINATION COMPOUNDS

OCTAHEDRAL COMPLEXES

σ-Bonding

In the valence shell of transition metals, there are 9 atomic orbitals ($5 d+1 s+3 p)$. For octahedral ML6 complex, the point group is O_{h}. The symmetry of the nine valance orbitals is found from the Oh point group character table as $a_{1 g}(1 s), t_{1 u}\left(p_{x}, p_{y}, p_{z}\right), t_{2 g}\left(d_{x y}, d_{x z}, d_{y z}\right)$ and $e_{g}\left(d_{x 2-y 2}, d_{z 2}\right)$. In the octahedral complexes, each of the six ligands has an orbital, which is σ symmetrical around the $M-L$ bond axis and directed to the central atom. Only the ligands forming the σ-bond interact with the hybrid orbitals. Examples of such ligands are $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$. This orbital is filled $s p^{3}$ hybrid orbital for the NH_{3} ligand, and is one of the full 3 p orbitals for $C l$. In metal, there are atomic orbitals with $a_{1 g}, t_{1 u}, t_{2 g}$ and e_{g} symmetry, while the ligand group orbitals are with σ symmetry directed to the metal atom. Orbitals with the same symmetry representation overlap and then the BMOs and AMOs are formed. The ligand group orbitals which do not make any overlapping remain the NMOs.

$$
\begin{gathered}
{\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}} \\
a_{l_{g}{ }^{2}} t_{1 u}{ }^{6} e_{g}{ }^{2} t_{2 g}{ }^{6} \\
\Delta_{o}>p
\end{gathered}
$$

Diamagnetic

$$
\begin{gathered}
{\left[C o F_{6}\right]^{3-}} \\
a_{1 g}{ }^{2} t_{1 u}{ }^{6} e_{g}{ }^{2} t_{2 g}{ }^{4} e_{g}{ }^{2} \\
\Delta_{o}<p
\end{gathered}
$$

Paramagnetic (4 unpaired electrons)
$t_{2 g} \rightarrow e_{g}$ transitions determine the color of complexes. The colors of these complexes are different as the LFSEs are different.

PROR: DR. SELEN BIILGE KOCAK
 CHM0308 INORGANIC CHEMISTRY II

 CHM0308 INORGANIC CHEMISTRY II

tiv

Ligand group orbitals corresponding to the symmetry of the central atom orbitals which may form the σ bond in octahedral complexes

 CHM0308 INORGANIC CHEMISTRY II

The acceptance and explanation of n-bonding indicates that the MOT has a significant advantage over VBT and CAT. The presence of stable metal complexes with low oxidation steps such as $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ by Π-binding and the order of the ligands forming the spectrochemical series can be explained more satisfactorily. If there are Π-symmetric orbitals in the ligands relative to the $M-L$ bond axis, these orbitals can overlap with the n-symmetric orbitals of the metal to form Π-symmetric molecular orbitals. The ligands which are capable of n-binding are divided into Lewis-electron donor (Lewis Π-base) ligands and Π-electron acceptor (Lewis Π-acid) ligands.

PROR: DR. SELEN BILGGEOCAK

CHM0308 INORGANIC CHEMISTRY II
(a)

(b)

(c) $m<0$

PROR: DR. SELEN BIILGE KOCAK
 CHM0308 INORGANIC CHEMISTRY II

In the formation of M-CO bond
In the formation of $M-\mathrm{PF}_{3}$ bond
In the formation of M-PF3 and M-CF3 bonds

e^{*}
$\overline{\#}$

PROR: DR SELEN BIILGEROCAK
 CHM0308 INORGANIC CHEMISTRY II

paramagnetic

CHM0308 INORGANIC CHEMISTRY II

$$
\overline{\bar{m}} \overline{\bar{m}}
$$

$$
\begin{gathered}
\frac{14}{t y} \\
B D=\left[\frac{[7-0]}{2} / 6=\frac{17}{\frac{17}{2}}=2+\frac{5}{6}\right.
\end{gathered}
$$

$\mathrm{Co}^{3+} \quad\left[\mathrm{COCl}_{6}\right]^{3-} \quad 6 \mathrm{Cl}^{-}$
\equiv正

PROF: DR. SELENBILIGEROCAK
 CHM0308 INORGANIC CHEMISTRY II

TETRAHEDRAL COMPLEXES

The ligands in the tetrahedral complexes are either the ligand forming only the σ-bond or the n-donor ligands. The point group of tetrahedral $M L_{4}$ complex is T_{d}. In the formation of the tetrahedral complex, ligands approach closer to the metal in the direction of the bisector Therefore, t_{2} orbitals form the molecular orbitals. The symmetry of the nine atomic orbits in the valence shell of the central atom is found in the character table of the T_{d} point group as a_{1} (s), $t_{2}\left(p_{x}, p_{y}, p_{z}\right), t_{2}\left(d_{x y}, d_{x z}, d_{y z}\right)$ and $e\left(d_{x 2-y 2}, d_{z 2}\right)$. The symmetry of the ligand group orbitals is a_{1} and t_{2}.

$$
\begin{aligned}
& \left.\mathrm{Co}^{2+} \quad \frac{[\mathrm{Co}}{+2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \quad 4 \mathrm{NH}_{3} \\
& \frac{1+1}{+26} \\
& \bar{F}
\end{aligned}
$$

$$
\begin{aligned}
& (2,)^{2}(+2)^{6}(e)^{4}\left(+t^{*}\right)^{3} \\
& B D=\left[\frac{8-3}{2}\right] / 4=\frac{5}{8}
\end{aligned}
$$

PROR: DR SEILENBILGEIKCAK
CHM0308 INORGANIC CHEMISTRY II

PROR. DR. SLilin bliciliccalk
 CHM0308 INORGANIC CHEMISTRY II

PROR.DR. SLLLENBILGEMCAKK
 CHM0308 INORGANIC CHEMISTRY II

SQUARE PLANAR COMPLEXES

For the metal atom: $e_{g}, a_{1 g}, b_{2 g}, b_{1 g}$

For the ligand group orbitals: $a_{1 g}, b_{1 g}, e_{u}$

$\mathbb{P R O R : D R}$ SIEILEN BIILGE IKOCAIK
 CHM0308 INORGANIC CHEMISTRY II

		σ-Ligand group orbital
Valence Orbitals of Metal	Symmetries	symmetry
s	$a_{l g}$	$a_{l g}$
$d_{z 2}$	$a_{l g}$	$b_{1 g}$
$d_{x 2-y 2}$	$b_{1 g}$	e_{u}
$p_{x,}, p_{y}$	e_{u}	
p_{z}	$a_{2 u}$	
$d_{x y}$	$b_{2 g}$	
$d_{x z}, d_{y z}$	e_{g}	

