Electrostatics (source charges are stationary)

What force do source charges exert on test charge Q ?

Figure 1

The principle of superposition: the interaction between any two charges is completely unaffected by the presence of others.

To determine the force on Q, first compute the force \mathbf{F}_{1}, due to q_{1} alone (ignoring all the others); then the force \mathbf{F}_{2}, due to q_{2} alone; and so on.
The sum of all individual forces: $\quad \mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3}+\ldots$
the force exerted on a test charge Q due to a single point charge q, is given by Coulomb's law:
Figure 2

$$
\mathbf{F}=\frac{1}{4 \pi \epsilon_{0}} \frac{q Q}{r^{2}} \hat{\boldsymbol{r}}
$$

ϵ_{0} : the permittivity of free space. In SI units, the force is in Newtons (N), distance in meters (m), and charge in coulombs (C),

$$
\epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}
$$

\boldsymbol{n}, is the separation vector from \mathbf{r}^{\prime} (the location of q) to \mathbf{r} (the location of Q):

$$
r=\mathbf{r}-\mathbf{r}^{\prime}
$$

The Electric Field

point charges $q_{1}, q_{2}, \ldots, q_{n}$, at distances
$r_{1}, r_{2}, \ldots, r_{n}$ from Q, the total force on Q

$$
\begin{aligned}
\mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}+\ldots & =\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q_{1} Q}{r_{1}^{2}} \hat{\boldsymbol{r}}_{1}+\frac{q_{2} Q}{r_{2}^{2}} \hat{\boldsymbol{r}}_{2}+\ldots\right) \\
& =\frac{Q}{4 \pi \epsilon_{0}}\left(\frac{q_{1}}{r_{1}^{2}} \hat{\boldsymbol{\imath}}_{1}+\frac{q_{2}}{r_{2}^{2}} \hat{\boldsymbol{n}}_{2}+\frac{q_{3}}{r_{3}^{2}} \hat{\boldsymbol{n}}_{3}+\ldots\right) \\
\mathbf{F} & =Q \mathbf{E}
\end{aligned}
$$

\mathbf{E} is called the electric field of the source charges. $\mathbf{E}(\mathbf{r})$ is a function of position (\mathbf{r});

$$
\mathbf{E}(\mathbf{r}) \equiv \frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{n} \frac{q_{i}}{r_{i}^{2}} \hat{\boldsymbol{n}}_{i}
$$

Example 1. Find the electric field a distance z above the midpoint between two equal charges (q), a distance d apart.

$$
E_{z}=2 \frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \cos \theta .
$$

Figure 4

$$
\begin{gathered}
r=\sqrt{z^{2}+(d / 2)^{2}} \\
\cos \theta=z / r \\
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{2 q z}{\left[z^{2}+(d / 2)^{2}\right]^{3 / 2}} \hat{\mathbf{z}} .
\end{gathered}
$$

When $z \gg d$

$$
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{2 q}{z^{2}} \hat{\mathbf{z}} . \quad \text { (just set } d \rightarrow 0 \text { in the formula). }
$$

Continuous Charge Distributions

If the charge is distributed continuously over some region, the electric field:

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{1}{r^{2}} \hat{\boldsymbol{r}} d q
$$

Continuous distribution

If the charge is spread out along a line, with charge-per-unit-length $\lambda(q / l)$,

Line charge, λ

If the charge is smeared out over a surface, with charge-per-unit-area $\sigma(q / a)$,

$$
d q=\sigma d a^{\prime}
$$

Surface charge, σ

Volume charge, ρ

$$
d q \rightarrow \lambda d l^{\prime} \sim \sigma d a^{\prime} \sim \rho d \tau^{\prime}
$$

The electric field of a line charge is

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\lambda\left(\mathbf{r}^{\prime}\right)}{r^{2}} \hat{r} d l^{\prime}
$$

The electric field of a surface charge is

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\sigma\left(\mathbf{r}^{\prime}\right)}{r^{2}} \hat{\imath} d a^{\prime}
$$

The electric field of a volume charge is

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{r^{2}} \hat{\imath} d \tau^{\prime}
$$

Example 2. Find the electric field a distance z above the midpoint of a straight line segment of length $2 L$ that carries a uniform line charge λ.

$$
\left.\begin{array}{rl}
r=\mathbf{r}-\mathbf{r}^{\prime} & =z \hat{\mathbf{z}}-x \hat{\mathbf{x}} \\
r & =\sqrt{z^{2}+x^{2}}
\end{array}\right\} \hat{r}=\frac{r}{r}=\frac{z \hat{\mathbf{z}}-x \hat{\mathbf{x}}}{\sqrt{z^{2}+x^{2}}}
$$

Figure 6

$$
\begin{aligned}
& \mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\lambda\left(\mathbf{r}^{\prime}\right)}{r^{2}} \hat{\imath} d l^{\prime} \\
& \mathbf{E}= \frac{1}{4 \pi \epsilon_{0}} \int_{-L}^{L} \frac{\lambda}{z^{2}+x^{2}} \frac{z \hat{\mathbf{z}}-x \hat{\mathbf{x}}}{\sqrt{z^{2}+x^{2}}} d x \\
&= \frac{\lambda}{4 \pi \epsilon_{0}}\left[z \hat{\mathbf{z}} \int_{-L}^{L} \frac{1}{\left(z^{2}+x^{2}\right)^{3 / 2}} d x-\hat{\mathbf{x}} \int_{-L}^{L} \frac{x}{\left(z^{2}+x^{2}\right)^{3 / 2}} d x\right] \\
&= \frac{\lambda}{4 \pi \epsilon_{0}}\left[\left.z \hat{\mathbf{z}}\left(\frac{x}{z^{2} \sqrt{z^{2}+x^{2}}}\right)\right|_{-L} ^{L}-\left.\hat{\mathbf{x}}\left(-\frac{1}{\sqrt{z^{2}+x^{2}}}\right)\right|_{-L} ^{L}\right] \\
&= \frac{1}{4 \pi \epsilon_{0}} \frac{2 \lambda L}{z \sqrt{z^{2}+L^{2}}} \hat{\mathbf{z}} .
\end{aligned}
$$

$$
(x=\mathrm{z} \tan u, \quad \mathrm{~d} x=\ldots \mathrm{d} u \mathrm{~B})
$$

$$
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{2 \lambda L}{z \sqrt{z^{2}+L^{2}}} \hat{\mathbf{z}}
$$

For points far from the line $(z \gg L)$,

$$
E \cong \frac{1}{4 \pi \epsilon_{0}} \frac{2 \lambda L}{z^{2}}
$$

From far away the line looks like a point charge $q=2 \lambda L$.

In the limit $L \rightarrow \infty$, on the other hand, we obtain the field of an infinite straight wire:

$$
E=\frac{1}{4 \pi \epsilon_{0}} \frac{2 \lambda}{z}
$$

HW-1: Page 65; Pr., 3, 5, 6.

