Problem 7: Find the electric field a distance z from the center of a spherical surface of radius R that carries a uniform charge density σ. Treat the case $z<R$ (inside) as well as $z>R$ (outside). Express your answers in terms of the total charge q on the sphere.
\mathbf{E} is in the z-direction, uniform charge density σ.

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\sigma\left(\mathbf{r}^{\prime}\right)}{r^{2}} \hat{\imath} d a^{\prime} \quad \longrightarrow \sigma d a=\text { ? }
$$

Figure 11
In spherical coordinates:

$$
\begin{aligned}
& d q=\sigma d a=\sigma R^{2} \sin \theta d \theta d \phi \\
& r^{2}=R^{2}+z^{2}-2 R z \cos \theta \\
& \cos \psi=\frac{z-R \cos \theta}{r}
\end{aligned}
$$

Spherical Coordinates

Any vector A can be expressed as

$$
\mathbf{A}=A_{r} \hat{\mathbf{r}}+A_{\theta} \hat{\boldsymbol{\theta}}+A_{\phi} \hat{\boldsymbol{\phi}}
$$

Transformation of Coordinates

Rectangular \Leftrightarrow Spherical

$$
\begin{gathered}
x=r \sin \theta \cos \phi \\
y=r \sin \theta \sin \phi \\
z=r \cos \theta \\
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\theta=\cos ^{-1} \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
\phi=\tan ^{-1} \frac{y}{x}
\end{gathered}
$$

r ranges from 0 to ∞,
θ from 0 to π
φ from 0 to 2π,

An infinitesimal displacement in the ${ }^{\wedge} \mathbf{r}$ direction:

$$
d l_{r}=d r
$$

Thus, the general infinitesimal displacement $d \boldsymbol{l}$ is

$$
d \mathbf{l}=d r \hat{\mathbf{r}}+r d \theta \hat{\boldsymbol{\theta}}+r \sin \theta d \phi \hat{\boldsymbol{\phi}}
$$

The infinitesimal volume element $d \tau$;

$$
d \tau=d l_{r} d l_{\theta} d l_{\phi}=r^{2} \sin \theta d r d \theta d \phi
$$

Is there a general expression for surface elements $d \mathbf{a}$?
No, it depend on the orientation of the surface.

Differential length, area, and volume in Cartesian coordinates:

In spherical coordinates:

In spherical coordinates:

$$
d l_{r}=d r \quad d l_{\theta}=r d \theta \quad d l_{\phi}=r \sin \theta d \phi
$$

Integrating over the surface of a sphere, then r is constant, whereas θ and φ change $\quad(\theta-\varphi$ spherical surface $)$,

$$
d \mathbf{a}_{1}=d l_{\theta} d l_{\phi} \hat{\mathbf{r}}=r^{2} \sin \theta d \theta d \phi \hat{\mathbf{r}}
$$

For constant θ; $(R-\varphi$ conical surface $)$,

$$
d \mathbf{a}_{2}=d l_{r} d l_{\phi} \hat{\boldsymbol{\theta}}=r d r d \phi \hat{\boldsymbol{\theta}}
$$

(For $\theta=\pi / 2$; the surface lies in the xy plane)

The surface area $d \boldsymbol{a}=r d r d \theta \hat{\boldsymbol{\emptyset}}$
$\boldsymbol{E} . g .:$ Find the volume of a sphere of radius R.

$$
\begin{aligned}
V & =\int d \tau=\int_{r=0}^{R} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} r^{2} \sin \theta d r d \theta d \phi \\
& =\left(\int_{0}^{R} r^{2} d r\right)\left(\int_{0}^{\pi} \sin \theta d \theta\right)\left(\int_{0}^{2 \pi} d \phi\right) \\
& =\left(\frac{R^{3}}{3}\right)(2)(2 \pi)=\frac{4}{3} \pi R^{3}
\end{aligned}
$$

Problem 7: Find the electric field a distance z from the center of a spherical surface of radius R that carries a uniform charge density σ. Treat the case $z<R$ (inside) as well as $z>R$ (outside). Express your answers in terms of the total charge q on the sphere.
\mathbf{E} is in the \mathbf{z}-direction, uniform charge density σ.

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\sigma\left(\mathbf{r}^{\prime}\right)}{r^{2}} \hat{\imath} d a^{\prime} \longrightarrow \sigma d a=\text { ? }
$$

Figure 11
By symmetry \mathbf{E} is in z-direction;

$$
E(\vec{r})=E_{z} \hat{z} \longrightarrow E_{z}=|E(\vec{r})| \cos \psi
$$

In spherical coordinates:

$$
\begin{gathered}
d q=\sigma d a=\sigma R^{2} \sin \theta d \theta d \phi \\
r^{2}=R^{2}+z^{2}-2 R z \cos \theta \\
\cos \psi=\frac{z-R \cos \theta}{r}
\end{gathered}
$$

$$
\begin{gathered}
E_{z}=\frac{1}{4 \pi \epsilon_{0}} \iint \frac{\sigma R^{2} \sin \theta d \theta d \phi(z-R \cos \theta)}{\left(R^{2}+z^{2}-2 R z \cos \theta\right)^{3 / 2}} \quad \int d \phi=2 \pi \\
=\frac{1}{4 \pi \epsilon_{0}}\left(2 \pi R^{2} \sigma\right) \int_{0}^{\pi} \frac{(z-R \cos \theta) \sin \theta}{\left(R^{2}+z^{2}-2 R z \cos \theta\right)^{3 / 2}} d \theta \\
\text { Let } u=\cos \theta ; d u=-\sin \theta d \theta ;\left\{\begin{array}{l}
\theta=0 \Rightarrow u=+1 \\
\theta=\pi \Rightarrow u=-1
\end{array}\right\} \\
E_{z}=\frac{1}{4 \pi \epsilon_{0}}\left(2 \pi R^{2} \sigma\right) \int_{-1}^{1} \frac{z-R u}{\left(R^{2}+z^{2}-2 R z u\right)^{3 / 2}} d u \\
=\frac{1}{4 \pi \epsilon_{0}}\left(2 \pi R^{2} \sigma\right)\left[\frac{1}{z^{2}} \frac{z u-R}{\sqrt{R^{2}+z^{2}-2 R z u}}\right]_{-1}^{1}=\frac{1}{4 \pi \epsilon_{0}} \frac{2 \pi R^{2} \sigma}{z^{2}}\left\{\frac{(z-R)}{|z-R|}-\frac{(-z-R)}{|z+R|}\right\}
\end{gathered}
$$

For $\mathrm{z}>\mathrm{R}$ (outside the sphere),

$$
\begin{aligned}
& E_{z}=\frac{1}{4 \pi \epsilon_{0}} \frac{4 \pi R^{2} \sigma}{z^{2}}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{z^{2}} \\
& \mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{z^{2}} \hat{\mathbf{z}}
\end{aligned}
$$

For $z<R$ (inside),

$$
E_{z}=0, \quad \mathbf{E}=\mathbf{0}
$$

