Applications of Gauss's Law

Example 3. Find the field outside a uniformly charged solid sphere of radius R and total charge q.

$$
\oint_{\mathcal{S}} \mathbf{E} \cdot d \mathbf{a}=\frac{1}{\epsilon_{0}} Q_{\mathrm{enc}} \quad Q_{\mathrm{enc}}=q
$$

\mathbf{E} points radially outward, as does $d \mathbf{a}$,

Figure 18

$$
\int_{\mathcal{S}} \mathbf{E} \cdot d \mathbf{a}=\int_{\mathcal{S}}|\mathbf{E}| d a
$$

The magnitude of \mathbf{E} is constant over the Gaussian surface;

$$
\begin{array}{r}
\int_{\mathcal{S}}|\mathbf{E}| d a=|\mathbf{E}| \int_{\mathcal{S}} d a=|\mathbf{E}| 4 \pi r^{2} \\
|\mathbf{E}| 4 \pi r^{2}=\frac{1}{\epsilon_{0}} q
\end{array}
$$

Symmetry is crucial at application of Gauss's law. There are three kinds of symmetry:

1. Spherical symmetry. Make your Gaussian surface a concentric sphere.
2. Cylindrical symmetry. Make your Gaussian surface a coaxial cylinder.

3. Plane symmetry. Use a Gaussian "pillbox" that straddles the surface.

Cylindrical Coordinates

$$
\begin{gathered}
x=\rho \cos \phi \\
y=\rho \sin \phi \\
z=z
\end{gathered}
$$

express the cylindrical variables in terms of x, y, and z :

$$
\begin{gathered}
\rho=\sqrt{x^{2}+y^{2}} \quad(\rho \geq 0) \\
\phi=\tan ^{-1} \frac{y}{x} \\
z=z
\end{gathered}
$$

A differential volume element in cylindrical coordinates may be obtained by increasing ρ, φ, and z by the differential increments $d \rho, d \varphi$, and $d z$.

Note that $d \rho$ and $d z$ are dimensionally lengths: but $d \varphi$ is not; $\rho d \varphi$ is the length.

The surfaces have areas of $\rho d \rho d \varphi$, $d \rho d z$, and
$\rho d \varphi d z$, and the volume becomes $\rho d \rho d \varphi d z$.

Example 4. A long cylinder carries a charge density that is proportional to the distance from the axis: $\rho=k s$, for some constant k. Find the electric field inside this cylinder.

Draw a Gaussian cylinder of length l and radius s;

$$
\begin{gathered}
\oint_{\mathcal{S}} \mathbf{E} \cdot d \mathbf{a}=\frac{1}{\epsilon_{0}} Q_{\mathrm{enc}} \\
Q_{\mathrm{enc}}=\int \rho d \tau=\int\left(k s^{\prime}\right)\left(s^{\prime} d s^{\prime} d \phi d z\right)=2 \pi k l \int_{0}^{s} s^{\prime 2} d s^{\prime}=\frac{2}{3} \pi k l s^{3} \\
\text { (integrated } \varphi \text { from } 0 \text { to } 2 \pi, d z \text { from } 0 \text { to } l . \\
\int \mathbf{E} \cdot d \mathbf{a}=\int|\mathbf{E}| d a=|\mathbf{E}| \int d a=|\mathbf{E}| 2 \pi s l
\end{gathered}
$$

(\mathbf{E} must point radially outward, so for the curved portion of the Gaussian cylinder adds up, while the two ends contribute nothing - here \mathbf{E} is perpendicular to $d \mathbf{a}$.)

$$
|\mathbf{E}| 2 \pi s l=\frac{1}{\epsilon_{0}} \frac{2}{3} \pi k l s^{3} \longrightarrow \mathbf{E}=\frac{1}{3 \epsilon_{0}} k s^{2} \hat{\mathbf{s}}
$$

Example 5. An infinite plane carries a uniform surface charge σ. Find its electric field. Gaussian pillbox," extending equal distances above and below the plane;

$$
\begin{gathered}
\oint \mathbf{E} \cdot d \mathbf{a}=\frac{1}{\epsilon_{0}} Q_{\mathrm{enc}} \\
\int \mathbf{E} \cdot d \mathbf{a}=2 A|\mathbf{E}| \\
Q_{\mathrm{enc}}=\sigma A \\
2 A|\mathbf{E}|=\frac{1}{\epsilon_{0}} \sigma A \longrightarrow \mathbf{E}=\frac{\sigma}{2 \epsilon_{0}} \hat{\mathbf{n}} \\
\hat{\mathbf{n}} \text { is a unit vector pointing away from the surface. }
\end{gathered}
$$

Figure 22

Example 6. Two infinite parallel planes carry equal but opposite uniform charge densities $\pm \sigma$. Find the field in each of the three regions: (i) to the left of both, (ii) between them, (iii) to the right of both.

Figure 23-24

The field between the plates is σ / ϵ_{0}, and points to the right; elsewhere it is zero.

HW-3: Page 76; Pr.: 11-14

