The Curl

$$
\begin{aligned}
\nabla \times \mathbf{v} & =\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
v_{x} & v_{y} & v_{z}
\end{array}\right| \\
& =\hat{\mathbf{x}}\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right)+\hat{\mathbf{y}}\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right)+\hat{\mathbf{z}}\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right)
\end{aligned}
$$

Geometrical Interpretation: $\boldsymbol{\nabla} \times \mathbf{v}$ is a measure of how much the vector \mathbf{v} swirls around the point in question.

Figure

The Curl of \mathbf{E}

The \boldsymbol{E} field of a point charge at the origin:

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}}
$$

$\longrightarrow \quad$ the curl of this field is zero

$$
\nabla \times \mathbf{E}=\mathbf{0}
$$

The line integral of a field from a point a to point b :

Figure 29

$$
\int_{\mathrm{a}}^{\mathrm{b}} \mathbf{E} \cdot d \mathbf{l}
$$

r_{a}; the distance from the origin to the point a
r_{b}; the distance to b.

In spherical coordinates;

$$
d \mathbf{l}=d r \hat{\mathbf{r}}+r d \theta \hat{\boldsymbol{\theta}}+r \sin \theta d \phi \hat{\boldsymbol{\phi}} \quad \Longrightarrow \mathbf{E} \cdot d \mathbf{l}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} d r
$$

(\mathbf{E} is in radial direction, θ ve φ don't contribute to E.d \boldsymbol{l})
Therefore;

$$
\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d \mathbf{l}=\frac{1}{4 \pi \epsilon_{0}} \int_{\mathbf{a}}^{\mathbf{b}} \frac{q}{r^{2}} d r=\left.\frac{-1}{4 \pi \epsilon_{0}} \frac{q}{r}\right|_{r_{a}} ^{r_{b}}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q}{r_{a}}-\frac{q}{r_{b}}\right)
$$

Result: The line integral only depends on the coordinates of the endpoints; that is, independent of the path.

$$
\text { The integral around a closed path } r_{a}=r_{b} \text { : }
$$

Figure 29

$$
\oint \mathbf{E} \cdot d \mathbf{l}=0
$$

Stokes' theorem:

$$
\int_{\mathcal{S}}(\nabla \times \mathbf{v}) \cdot d \mathbf{a}=\oint_{\mathcal{P}} \mathbf{v} \cdot d \mathbf{l}
$$

Applying Stokes' theorem;

$$
\oint \mathbf{E} \cdot d \mathbf{l}=0 \quad \longrightarrow \quad \nabla \times \mathbf{E}=\mathbf{0}
$$

(hold for any static charge distribution whatever.)

For many charges, using the principle of superposition;

$$
\begin{gathered}
\mathbf{E}=\mathbf{E}_{1}+\mathbf{E}_{2}+\ldots \\
\boldsymbol{\nabla} \times \mathbf{E}=\boldsymbol{\nabla} \times\left(\mathbf{E}_{1}+\mathbf{E}_{2}+\ldots\right)=\left(\boldsymbol{\nabla} \times \mathbf{E}_{1}\right)+\left(\boldsymbol{\nabla} \times \mathbf{E}_{2}\right)+\ldots=\mathbf{0}
\end{gathered}
$$

ELECTRIC POTENTIAL

Any vector whose curl is zero is equal to the gradient of some scalar.

$$
\nabla \times \mathbf{F}=\mathbf{0} \Longleftrightarrow \mathbf{F}=-\nabla V
$$

Theorem:

Curl-less (or "irrotational") fields. The following conditions are equivalent (that is, \mathbf{F} satisfies one if and only if it satisfies all the others):
(a) $\boldsymbol{\nabla} \times \mathbf{F}=\mathbf{0}$ everywhere.
(b) $\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d \mathbf{l}$ is independent of path, for any given end points.
(c) $\oint \mathbf{F} \cdot d \mathbf{l}=0$ for any closed loop.
(d) \mathbf{F} is the gradient of some scalar function: $\mathbf{F}=-\nabla V$.

Because the line integral is independent of path, we can define a function:

$$
V(\mathbf{r}) \equiv-\int_{\mathcal{O}}^{\mathbf{r}} \mathbf{E} \cdot d \mathbf{l}
$$

\mathcal{O} : standard reference point. It is called the electric potential.
The potential difference between two points \mathbf{a} and \mathbf{b} is

$$
\begin{aligned}
V(\mathbf{b})-V(\mathbf{a}) & =-\int_{\mathcal{O}}^{\mathbf{b}} \mathbf{E} \cdot d \mathbf{l}+\int_{\mathcal{O}}^{\mathbf{a}} \mathbf{E} \cdot d \mathbf{l} \\
& =-\int_{\mathcal{O}}^{\mathbf{b}} \mathbf{E} \cdot d \mathbf{l}-\int_{\mathbf{a}}^{\mathcal{O}} \mathbf{E} \cdot d \mathbf{l}=-\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d \mathbf{l}
\end{aligned}
$$

The fundamental theorem for gradients states that

$$
V(\mathbf{b})-V(\mathbf{a})=\int_{\mathbf{a}}^{\mathbf{b}}(\nabla V) \cdot d \mathbf{l}
$$

$$
\int_{\mathbf{a}}^{\mathbf{b}}(\nabla V) \cdot d \mathbf{l}=-\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d \mathbf{l}
$$

$$
\mathbf{E}=-\nabla V
$$

Example 7. Find the potential inside and outside a spherical shell of radius R that carries a uniform surface charge. Set the reference point at infinity.

Using Gauss's law, the field outside is

Figure 31

$$
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}}
$$

The field inside the shell is zero.

For points outside the sphere $(r>R)$,

$$
V(r)=-\int_{\mathcal{O}}^{\mathbf{r}} \mathbf{E} \cdot d \mathbf{l}=\frac{-1}{4 \pi \epsilon_{0}} \int_{\infty}^{r} \frac{q}{r^{\prime 2}} d r^{\prime}=\left.\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{\prime}}\right|_{\infty} ^{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r}
$$

The potential inside the sphere $(r<R)$,

$$
V(r)=\frac{-1}{4 \pi \epsilon_{0}} \int_{\infty}^{R} \frac{q}{r^{\prime 2}} d r^{\prime}-\int_{R}^{r}(0) d r^{\prime}=\left.\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{\prime}}\right|_{\infty} ^{R}+0=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{R}
$$

The potential is not zero inside the shell, even though the field is. V is a constant in this region, to be sure, so that $\nabla V=\mathbf{0}$-that's what matters. 7

Poisson's Equation and Laplace's Equation

The electric field written as the gradient of a scalar potential;

$$
\mathbf{E}=-\nabla V
$$

What do the divergence and curl of \mathbf{E}, look like, in terms of V ?

$$
\begin{aligned}
& \nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}} \quad \nabla \times \mathbf{E}=\mathbf{0} \\
& \nabla \cdot \stackrel{\leftarrow}{\mathbf{E}}=\nabla \cdot(-\stackrel{\rightharpoonup}{\nabla} V)=-\nabla^{2} V
\end{aligned}
$$

$$
\nabla^{2} V=-\frac{\rho}{\epsilon_{0}} \quad \Longrightarrow \quad \text { Poisson's equation }
$$

In regions where there is no charge, so $\rho=0$,

$$
\nabla^{2} V=0
$$

Laplace's equation
The curl of \mathbf{E};

$$
\nabla \times \stackrel{\leftrightarrow}{\mathbf{E}}=\boldsymbol{\nabla} \times(-\stackrel{\rightharpoonup}{\nabla} V)=\mathbf{0}
$$

The Potential of a Localized Charge Distribution

The electric field of a point charge at the origin:

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}}
$$

In spherical coordinates;

$$
d \mathbf{l}=d r \hat{\mathbf{r}}+r d \theta \hat{\boldsymbol{\theta}}+r \sin \theta d \phi \hat{\boldsymbol{\phi}} \quad \longleftrightarrow \mathbf{E} \cdot d \mathbf{l}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} d r
$$

Setting the reference point at infinity, the potential of a point charge q at the origin is;

$$
V(r)=-\int_{\mathcal{O}}^{\mathbf{r}} \mathbf{E} \cdot d \mathbf{l}=\frac{-1}{4 \pi \epsilon_{0}} \int_{\infty}^{r} \frac{q}{r^{\prime 2}} d r^{\prime}=\left.\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{\prime}}\right|_{\infty} ^{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r}
$$

point charge

continuous distribution

$$
V(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{1}{r} d q
$$

For a volume charge
The potentials of line and surface charges: $\quad V(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{r} d \tau^{\prime}$

$$
V=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\lambda\left(\mathbf{r}^{\prime}\right)}{r} d l^{\prime} \quad V=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\sigma\left(\mathbf{r}^{\prime}\right)}{r} d a^{\prime}
$$

Example 8. Find the potential of a uniformly charged spherical shell of radius R.

$$
V(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\sigma}{r} d a^{\prime}
$$

Figure 33
using the law of cosines to:

$$
r^{2}=R^{2}+z^{2}-2 R z \cos \theta^{\prime}
$$

$$
d a^{\prime}=R^{2} \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime}
$$

$$
\begin{aligned}
& V(z)=\frac{\sigma}{4 \pi \epsilon_{0}} \int \frac{R^{2} \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime}}{\sqrt{R^{2}+z^{2}-2 R z \cos \theta^{\prime}}} \\
& \begin{aligned}
4 \pi \epsilon_{0} V(z) & =\sigma \int \frac{R^{2} \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime}}{\sqrt{R^{2}+z^{2}-2 R z \cos \theta^{\prime}}} \\
& =2 \pi R^{2} \sigma \int_{0}^{\pi} \frac{\sin \theta^{\prime}}{\sqrt{R^{2}+z^{2}-2 R z \cos \theta^{\prime}}} d \theta^{\prime} \\
& =\left.2 \pi R^{2} \sigma\left(\frac{1}{R z} \sqrt{R^{2}+z^{2}-2 R z \cos \theta^{\prime}}\right)\right|_{0} ^{\pi} \\
& =\frac{2 \pi R \sigma}{z}\left(\sqrt{R^{2}+z^{2}+2 R z}-\sqrt{R^{2}+z^{2}-2 R z}\right) \\
& =\frac{2 \pi R \sigma}{z}\left[\sqrt{(R+z)^{2}}-\sqrt{(R-z)^{2}}\right] .
\end{aligned}
\end{aligned}
$$

$$
4 \pi \epsilon_{0} V(z)=\frac{2 \pi R \sigma}{z}\left[\sqrt{(R+z)^{2}}-\sqrt{(R-z)^{2}}\right] .
$$

For points outside the sphere, z is greater than $R \longrightarrow \sqrt{(R-z)^{2}}=z-R$
For points inside the sphere $\longrightarrow \sqrt{(R-z)^{2}}=R-z$
outside the sphere; $\quad V(z)=\frac{R \sigma}{2 \epsilon_{0} z}[(R+z)-(z-R)]=\frac{R^{2} \sigma}{\epsilon_{0} z}$
inside the sphere; $\quad V(z)=\frac{R \sigma}{2 \epsilon_{0} z}[(R+z)-(R-z)]=\frac{R \sigma}{\epsilon_{0}}$

In terms of r and the total charge on the shell, $q=4 \pi R^{2} \sigma$,

$$
V(r)= \begin{cases}\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} & (r \geq R) \\ \frac{1}{4 \pi \epsilon_{0}} \frac{q}{R} & (r \leq R)\end{cases}
$$

The three fundamental quantities of electrostatics: ρ, \mathbf{E}, and V :

Figure 35

