Boundary Conditions

Gauss’s law;
Flgu re 36 1 ]

%E * dfﬂ — _QE]“: —_ _UA
€0 €0 —

S =

(Et.pove denotes the component of E that is perpendicular to the surface immediately above)
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Ebove — Ebelow = ;U

The normal component of E is discontinuous by an amount o/¢, at any boundary.



The tangential component of E, is always continuous.
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E|| stands for the components of E parallel to the surface.

The boundary conditions on E can be combined into a single formula:
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n is a unit vector perpendicular to the surface.



The potential, meanwhile, is continuous across any boundary, since

[}]
’ral:rm-'e - Vbelnw = — f E . dl
a

Figure 38

as the path length shrinks to zero, the integral:

Vabove = Vbelow
However, the gradient of V inherits the discontinuity in E; since E =-VV,

l

\% "’ilhm'e -V 1i"fI:reIr;ﬂJi.-' = ——ohn
€0
or,
9 Vabove d Vielow l aV ;oA
, - = ——0 ==  Where —=VV.n
an an €0 an

denotes the normal derivative of V (that is, the rate of change in the direction perpendicular
to the surface).



WORK AND ENERGY IN ELECTROSTATICS

The Work It Takes to Move a Charge:

At stationary of source charges, moving a test charge Q from

point a to point b : How much work will you have to do? Figure 39

At any point along the path, the electric force on Q is F = QE;
the force you must exert, in opposition to this electrical force, is —QE.

The work you do is therefore
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(the potential difference between points a and b is equal to the work per unit charge
required to carry a particle fromatob.)



If you bring Q in from far away and stick it at point r, the work you must do is

W =Q[V(r) — V(c0)]

if you have set the reference point at infinity;

W=0VFr) == V) — %
Potential is potential energy (the work it takes to create the system) per unit charge
(just as the field is the force per unit charge).

The Energy of a Point Charge Distribution

How much work would it take to assemble an entire
collection of point charges?

Figure 40



The first charge, q,, takes no work, since there is no field yet to fight against.

Now bring in g,.
| q1
Wr = g | —
* 7 4ne ? (412)

Now, bring in gs;
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the extra work to bring in g,

] q1 D) {qs3
Wy = fm(" + 22,49 )
4 eg 24 A4 234

The total work necessary to assemble the first four charges;
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the general rule:
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count each pair twice, and then divide by 2.
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the potential at point r;(the position of g;)
due to all the other charges
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The Energy of a Continuous Charge Distribution

W = % Y gV For a volume charge density p, W = l f pVdr
T =l 2

(For line and surface charges: p=¢)V-E
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Wgence theorem
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integrating over all space: the surface integral goes to zero, and we are left with
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Example 9. Find the energy of a uniformly charged spherical shell of total charge g and radius R.
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the potential at the surface of the sphere is constant; (1/4mep)q/R
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Solution 2
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Inside the sphere, E = 0; outside, — E = —r — £ = -
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NOTE:

Because electrostatic energy is quadratic in the fields, it does not obey a
superposition principle.
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E.g.: If you double the charge everywhere, you quadruple the total energy.
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