CONDUCTORS

Insulator: each electron is attached to a particular atom (e.g. glass or rubber).

Conductor: one or more electrons per atom are free to roam (e.g. metals).
The basic electrostatic properties of ideal conductors:
(i) $\mathbf{E}=0$ inside a conductor.
put a conductor into an external electric field \mathbf{E}_{0}
induced charges produce a field of their own, \mathbf{E}_{1},
the field of the induced charges tends to cancel the original field.
the resultant field inside the conductor: $\mathrm{E}_{0}-\mathrm{E}_{1}=0$
(ii) $\boldsymbol{\rho}=\mathbf{0}$ inside a conductor.

$$
\text { Gauss's law: } \boldsymbol{\nabla} \cdot \mathbf{E}=\rho / \epsilon_{0} \text {. }
$$

(iii) Any net charge resides on the surface. That's the only place left.
(iv) A conductor is an equipotential.

For if \mathbf{a} and \mathbf{b} are any two points within (or at the surface of) a given conductor,

$$
V(\mathbf{b})-V(\mathbf{a})=-\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d \mathbf{l}=0 \quad \Longrightarrow V(\mathbf{a})=V(\mathbf{b})
$$

(v) \mathbf{E} is perpendicular to the surface, just outside a conductor.

Figure 43

Induced Charges

If you hold a charge $+q$ near an uncharged conductor, the two will attract one another:

Figure 44

If there is some hollow cavity in the conductor, and within that cavity you put some charge, then the field in the cavity will not be

Figure 45 zero.

Example 10. An uncharged spherical conductor centered at the origin has a cavity of some weird shape carved out of it (Fig. 46). Somewhere within the cavity is a charge q. Question: What is the field outside the sphere?

Figure 46

$$
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}}
$$

HW-4: Page 94; Pr. 32, 33, 38, 39

Capacitors

Two conductors; having $+Q$ charge on one and $-Q$ on the other. Since V is constant over a conductor, the potential difference between them:

$$
V=V_{+}-V_{-}=-\int_{(-)}^{(+)} \mathbf{E} \cdot d \mathbf{l} \quad \mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho}{r^{2}} \hat{\imath} d \tau
$$

Since \mathbf{E} is proportional to Q So, V is also proportional to Q.

$$
\downarrow
$$

The constant of proportionality is called the capacitance of the arrangement:

$$
C \equiv \frac{Q}{V}
$$

Capacitance is determined by the sizes, shapes, and separation of the two conductors. In SI units, C is measured in farads (F); a farad is a coulomb-per-volt.

Example. Find the capacitance of a parallel-plate capacitor consisting of two metal surfaces of area A held a distance d apart.

$$
E=\sigma / \epsilon_{0}=\left(1 / \epsilon_{0}\right) \mathrm{Q} / \mathrm{A}
$$

The potential difference between the plates;
Figure 52

$$
\begin{aligned}
& V=E d \quad V=\frac{Q}{A \epsilon_{0}} d \\
& (\mathrm{C}=\mathrm{Q} / \mathrm{V}) \quad \longrightarrow \quad C=\frac{A \epsilon_{0}}{d}
\end{aligned}
$$

E.g.: A square plates with sides 1 cm long, and held 1 mm apart, then the capacitance is

$$
\mathrm{C}=9 \times 10^{-13} \mathrm{~F}
$$

Example. Find the capacitance of two concentric spherical metal shells, with radii a and b.

The field between the spheres is

$$
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r^{2}} \hat{\mathbf{r}}
$$

The potential difference between the spheres;

$$
V=-\int_{b}^{a} \mathbf{E} \cdot d \mathbf{l}=-\frac{Q}{4 \pi \epsilon_{0}} \int_{b}^{a} \frac{1}{r^{2}} d r=\frac{Q}{4 \pi \epsilon_{0}}\left(\frac{1}{a}-\frac{1}{b}\right)
$$

The capacitance is

$$
C=\frac{Q}{V}=4 \pi \epsilon_{0} \frac{a b}{(b-a)}
$$

How much work does it take to charge a capacitor up to a final amount Q ?

Suppose that at some intermediate stage in the process the charge on the positive plate is q, so that the potential difference is q / C.

The work one must do to transport (the next) piece of charge, $d q$, is

$$
d W=\left(\frac{q}{C}\right) d q
$$

The total work necessary to go from $q=0$ to $q=Q$, is

$$
\begin{aligned}
& W=\int_{0}^{Q}\left(\frac{q}{C}\right) d q=\frac{1}{2} \frac{Q^{2}}{C} \\
& Q=C V, \quad W=\frac{1}{2} C V^{2}
\end{aligned}
$$

