THE ELECTRIC DISPLACEMENT

Gauss's Law in the Presence of Dielectrics

The field attributable to bound charge plus the field due to **free charge**, ρ_f .

Total charge inside a dielectric is:

Bound charges in a dielectric:

$$\rho = \rho_b + \rho_f \qquad \qquad \rho_b = -\nabla \cdot \mathbf{P} \quad \sigma_b = \mathbf{P} \cdot \hat{\mathbf{n}}$$

Gauss's law for the electric field is therefore :

$$(\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0})$$

$$\epsilon_0 \nabla \cdot \mathbf{E} = \rho = \rho_b + \rho_f = -\nabla \cdot \mathbf{P} + \rho_f$$

E is the total field, not just what is generated by the polarization.

 $\nabla \cdot (\epsilon_0 \mathbf{E} + \mathbf{P}) = \rho_f$ Define: Electric displacement $\mathbf{D} \equiv \epsilon_0 \mathbf{E} + \mathbf{P}$ $\nabla \cdot \mathbf{D} = \rho_f$ \longrightarrow Differential form of Gauss's law in presence of a dielectric $\oint \mathbf{D} \cdot d\mathbf{a} = Q_{f_{\text{enc}}} \longrightarrow \text{Integral form of Gauss's law in presence of a dielectric} Q_{f_{\text{enc}}} \text{ denotes the total free charge enclosed in the volume.}$

Example 4. A long straight wire, carrying uniform line charge λ , is surrounded by rubber insulation out to a radius *a*. Find the electric displacement.

Figure 17

$$\oint \mathbf{D} \cdot d\mathbf{a} = Q_{f_{enc}}$$

$$\oint D\hat{\mathbf{s}} \cdot d\mathbf{a} \,\hat{\mathbf{s}} = Q_{f_{enc}} \longrightarrow D(2\pi sL) = \lambda L \longrightarrow \mathbf{D} = \frac{\lambda}{2\pi s} \hat{\mathbf{s}}$$

this formula holds both within the insulation and outside it.

What is the electric field outside the dielectric (s > a) ?

$$\mathbf{E} = \frac{\mathbf{D}}{\epsilon_0} = \frac{\lambda}{2\pi\epsilon_0 s} \hat{\mathbf{s}} \qquad \text{(since } \mathbf{D} \equiv \epsilon_0 \mathbf{E} + \mathbf{P} \text{ and } \mathbf{P} = 0\text{)}$$

What is the electric field inside the dielectric (s < a)?

Since **P** inside is not known, electric field inside cannot be found.

Boundary Conditions in Dielectric

Boundary Conditions on electric field

Figure

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \longleftrightarrow \oint_{surf} \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{enc}}{\epsilon_0}$$

$$\Rightarrow \mathbf{E}^{\perp}_{above} - \mathbf{E}^{\perp}_{below} = \frac{\sigma}{\epsilon_0}$$

$$\nabla \times \mathbf{E} = 0 \longleftrightarrow \oint_{path} \mathbf{E} \cdot d\mathbf{l} = \mathbf{0}$$

$$\Rightarrow \mathbf{E}^{||}_{above} - \mathbf{E}^{||}_{below} = 0$$

Boundary Conditions on electric displacement

$$\nabla \cdot \mathbf{D} = \rho_f \quad \longleftrightarrow \quad \oint \mathbf{D} \cdot d\mathbf{a} = Q_{f_{enc}} \Rightarrow D^{\perp}_{above} - D^{\perp}_{below} = \sigma_f$$

 $\nabla \times \mathbf{D} = \epsilon_0 (\nabla \times \mathbf{E}) + \nabla \times \mathbf{P} = \nabla \times \mathbf{P} \implies D^{||}_{above} - D^{||}_{below} = P^{||}_{above} - P^{||}_{below}$

LINEAR DIELECTRICS

Two ways that an atom/molecule acquires *dipole moment*:

Stretch of an atom/molecule

Figure

Figure

Rotation of a polar atom/mol

- \Rightarrow **p** = α **E**_{else} α is the atomic polarizability
 - \mathbf{E}_{else} is the external field, caused by everything except the atom

Dipole moment **p** is a microscopic quantity. However, polarization **P** (dipole moment per unit volume) is a macroscopic quantity.

If **E** is not too strong

$$\mathbf{P} = \epsilon_0 \chi_e \mathbf{E}$$

- χ_e is called the electrical susceptibility and depends on the details (microscopic and macroscopic of the medium)
- **E** is the total field caused by everything.
- How are α and χ_e connected?

Linear Dielectrics

 $\mathbf{P} = \epsilon_0 \chi_e \mathbf{E}$ • Medium that obeys this equation is called the linear dielectric

- When polarization is proportional to the square or higherorder terms in **E**, the medium is called the nonlinear dielectric.
- At strong enough **E** every medium becomes nonlinear.
- In general χ_e is a tensor and is called the susceptibility tensor.

The electric displacement **D** for a linear dielectric

$$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} = \epsilon_0 \mathbf{E} + \epsilon_0 \chi_e \mathbf{E} = \epsilon_0 (1 + \chi_e) \mathbf{E}$$

Define: $\epsilon \equiv \epsilon_0 (1 + \chi_e)$
Define: $\epsilon_r \equiv \frac{\epsilon}{\epsilon_0} = (1 + \chi_e)$

• The electric displacement **D** is also proportional to **E**

$$\mathbf{D} = \epsilon \mathbf{E}$$

- ϵ is called the permittivity of the material.
- ϵ_r is called the relative permittivity or the dielectric constant.
- $n = \sqrt{\epsilon_r}$ is called the refractive index.

How are α and χ_e connected? ----- Without derivation;

٠

$$\alpha = \frac{3\epsilon_0}{N} \frac{(\epsilon_r - 1)}{(\epsilon_r + 2)}$$

- Clausius-Mossotti formula
- Connects a microscopic quantity to a macroscopic quantity

		Dielectric		Dielectric
	Material	Constant	Material	Constant
Data from Handbook of Chemistry and Physics, 91st ed. (Boca Raton: CRC Press, 2010).	Vacuum	1	Benzene	2.28
	Helium	1.000065	Diamond	5.7-5.9
	Neon	1.00013	Salt	5.9
	Hydrogen (H ₂)	1.000254	Silicon	11.7
	Argon	1.000517	Methanol	33.0
	Air (dry)	1.000536	Water	80.1
	Nitrogen (N_2)	1.000548	Ice (-30° C)	104
	Water vapor (100° C)	1.00589	KTaNbO ₃ (0° C)	34,000

Example 5. A metal sphere of radius *a* carries a charge *Q*. It is surrounded, out to radius *b*, by linear dielectric material of permittivity ϵ . Find the potential at the center (relative to infinity).

Inside the metal sphere, of course, $\mathbf{E} = \mathbf{P} = \mathbf{D} = \mathbf{0}$.

Using Gauss Law for r > a:

$$\mathbf{D} = \frac{Q}{4\pi r^2} \mathbf{\hat{r}}, \quad \text{for all points } r > a.$$

Figure 20

$$\mathbf{E} = \begin{cases} \frac{Q}{4\pi\epsilon r^2} \mathbf{\hat{r}}, & \text{for } a < r < b, \\ \frac{Q}{4\pi\epsilon_0 r^2} \mathbf{\hat{r}}, & \text{for } r > b. \end{cases}$$

The potential at the center, r = 0

$$V = -\int_{\infty}^{0} \mathbf{E} \cdot d\mathbf{l} = -\int_{\infty}^{b} \left(\frac{Q}{4\pi\epsilon_{0}r^{2}}\right) dr - \int_{b}^{a} \left(\frac{Q}{4\pi\epsilon_{0}r^{2}}\right) dr - \int_{a}^{0} (0) dr$$
$$= \frac{Q}{4\pi} \left(\frac{1}{\epsilon_{0}b} + \frac{1}{\epsilon a} - \frac{1}{\epsilon b}\right).$$

The polarization and the bound charges:

$$\mathbf{P} = \epsilon_0 \chi_e \mathbf{E} = \frac{\epsilon_0 \chi_e Q}{4\pi \epsilon r^2} \mathbf{\hat{r}}$$

$$\rho_b = -\nabla \cdot \mathbf{P} = 0 \qquad \qquad \nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}$$

$$\sigma_b = \mathbf{P} \cdot \mathbf{\hat{n}} = \begin{cases} \frac{\epsilon_0 \chi_e Q}{4\pi \epsilon b^2}, & \text{at the outer surface,} \\ \frac{-\epsilon_0 \chi_e Q}{4\pi \epsilon a^2}, & \text{at the inner surface.} \end{cases}$$