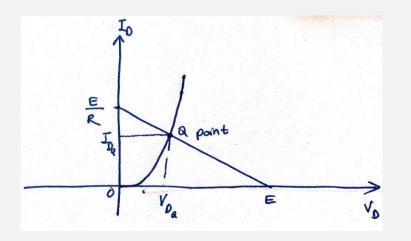


BME 202 Electronics


Lecture 3: Diode Applications

Load-Line Analysis

The load line plots all possible combinations of diode current (I_D) and voltage (V_D) for a given circuit. The maximum I_D equals *E/R*, and the maximum V_D equals *E*.

The point where the load line and the characteristic curve intersect is the Q-point, which identifies I_D and V_D for a particular diode in a given circuit.

Series Diode Configurations

Analysis (for silicon)

Forward Bias

$$V_D = 0.7 \text{ V} \text{ (or } V_D = E \text{ if } E < 0.7 \text{ V})$$

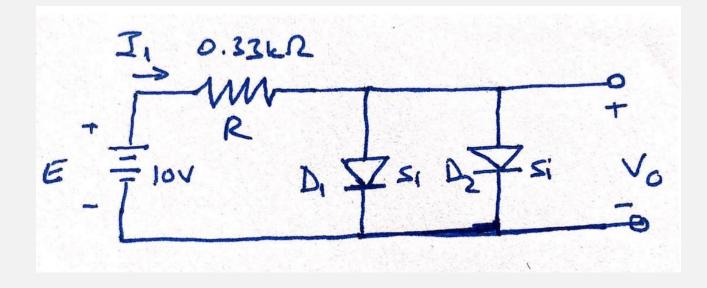
 $V_R = E - V_D$
 $I_D = I_R = I_T = V_R / R$

Reverse Bias

Constants

E

Silicon Diode: $V_D = 0.7 V$


Germanium Diode: $V_D = 0.3 V$

$$V_D = E$$

 $V_R = 0$ V

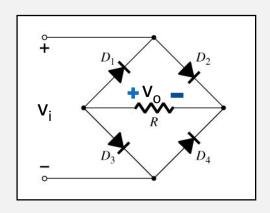
 $I_D = 0 A$

Paralel Diode Configurations

The diode conducts only when it is forward biased, therefore only half of the AC cycle passes through the diode to the output.

The DC output voltage is $0.318V_m$, where V_m = the peak AC voltage.

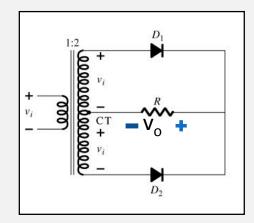
The diode is only forward biased for one-half of the AC cycle and is reverse biased for the other half cycle.


It is important that the reverse breakdown voltage rating of the diode be high enough to withstand the peak, reverse-biasing AC voltage.

PIV (or PRV) > V_m

- where, **PIV** : Peak inverse voltage
 - **PRV** : Peak reverse voltage
 - V_m : Peak AC voltage

Full Wave Rectifier


Bridge Rectifier

A full-wave rectifier with four diodes that are connected in a bridge configuration

 $V_{\rm DC} = 0.636 V_m$

Full Wave Rectifier

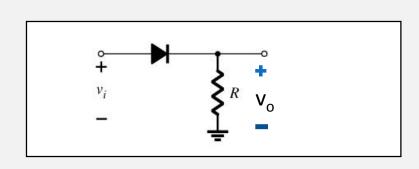
Center-Tapped Transformer Rectifier

Requires two diodes and a center-tapped transformer

$$V_{\rm DC} = 0.636 V_m$$

Rectifier	Ideal V _{DC}	Realistic V _{DC}
Half Wave Rectifier	V_{DC} = 0.318V _m	$V_{\rm DC} = 0.318 V_m - 0.7$
Bridge Rectifier	V_{DC} = 0.636 <i>V_m</i>	$V_{\rm DC} = 0.636 V_m - 2(0.7 \text{ V})$
Center-Tapped Transformer Rectifier	V_{DC} = 0.636 <i>V_m</i>	$V_{\rm DC} = 0.636 V_m - 0.7 {\rm V}$

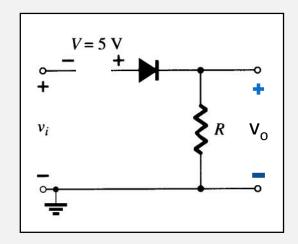
Clippers are networks that employ diodes to "clip" away a portion of an input signal without distorting the remaining part of the applied waveform.


e.g. Half wave rectifier

Categories of Clippers

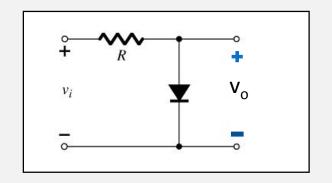
- Series
- Parallel

Clippers



The diode in a series clipper "clips" any voltage that does not forward bias it:

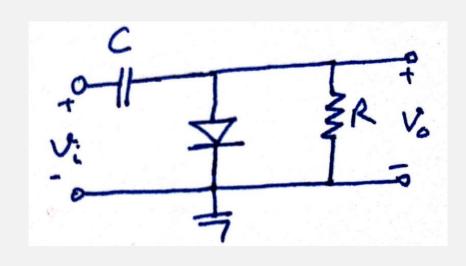
- A reverse-biasing polarity
- A forward-biasing polarity less than 0.7 V (for a silicon diode)


Biased Clippers

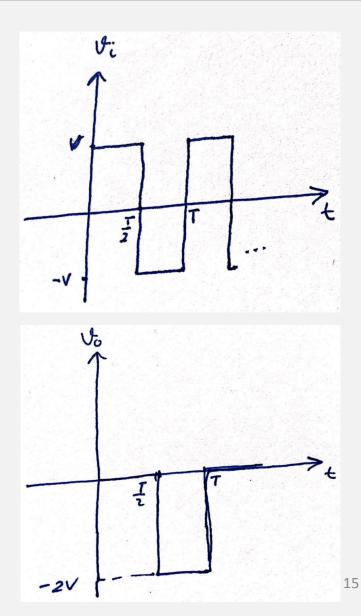
Adding a DC source in series with the clipping diode changes the effective forward bias of the diode.

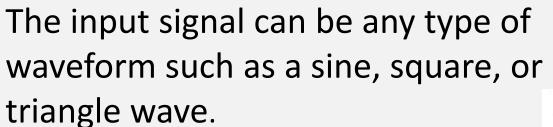
The diode in a parallel clipper circuit "clips" any voltage that forward biases it.

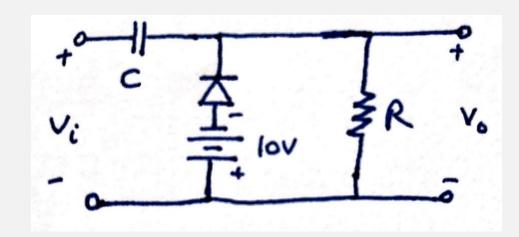
DC biasing can be added in series with the diode to change the clipping level.

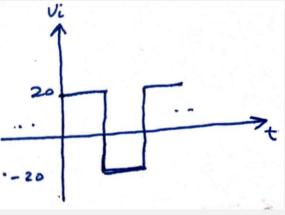


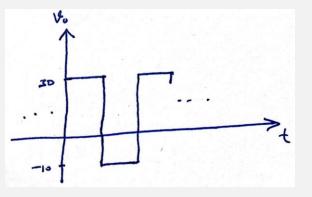
A clamper is a network constructed of a diode, a resistor, and a capcitor that shifts a waveform to a different DC level without changing the appearance of the applied signal.


Clamping networks have a capacitor connected directly from input to output with a resistive element in parallel with the output signal. The diode is also in paralel with the output signal but may or may not have a series DC supply as an added element.


Clampers

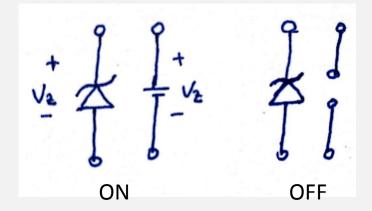


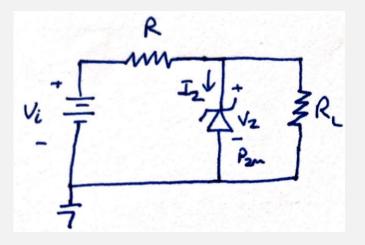

A diode and capacitor can be combined to "clamp" an AC signal to a specific DC level.



The DC source lets you adjust the DC camping level.

Zener Diodes


The Zener is a diode that is operated in reverse bias at the Zener Voltage (V_z) .


When $V_i \ge V_z$

- The Zener is on
- Voltage across the Zener is V_Z
- Zener current: $I_Z = I_R I_{RL}$
- The Zener Power: $P_Z = V_Z I_Z$

When $V_i < V_z$

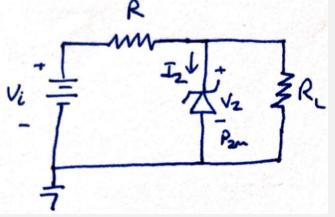
- The Zener is off
- The Zener acts as an open circuit

Zener Diodes

If *R* is too large, the Zener diode cannot conduct because $I_Z < I_{ZK}$. The minimum current is given by:

$$I_{Lmin} = I_R - I_{ZK}$$

 $R_{Lmax} = \frac{V_Z}{I}$


The *maximum* value of resistance is:

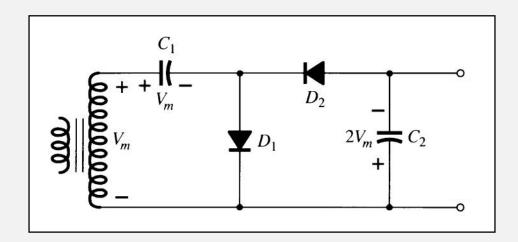
If *R* is too small, $I_Z > I_{ZM}$. The maximum allowable current for the circuit is given by:

The *minimum* value of resistance is:

$$R_{L\min} = \frac{RV_Z}{V_i - V_Z}$$

$$I_{L\max} = \frac{V_L}{R_L} = \frac{V_Z}{R_{L\min}}$$

Voltage multiplier circuits use a combination of diodes and capacitors to step up the output voltage of rectifier circuits. Three common voltage multipliers are the:


Voltage Doubler

Voltage Tripler

Voltage Quadrupler

Voltage Doubler

This half-wave voltage doubler's output can be calculated using:

$$V_{out} = V_{C2} = 2V_m$$

where V_m = peak secondary voltage of the transformer

Positive Half-Cycle

Negative Half-Cycle

 D_1 conducts D_2 is switched off Capacitor C_1 charges to V_m

 D_1 is switched off D_2 conducts Capacitor C_2 charges to V_m

$$V_{out} = V_{C2} = 2V_m$$

Rectifier Circuits

Conversions of AC to DC for DC operated circuits Battery Charging Circuits

Simple Diode Circuits

Protective Circuits against overcurrent Polarity Reversal Currents caused by an inductive kick in a relay circuit

Zener Circuits

Overvoltage Protection Setting Reference Voltages