

BME 202 Electronics

Lecture 13: BJT and JFET Frequency Response

General Frequency Considerations

Frequency Response: The frequency range in which an amplifier will operate with negligible effects from capacitors and device internal capacitances; often called the mid-range.

- At frequencies <u>below</u> mid-range, the coupling and bypass capacitors lower the gain.
- At frequencies <u>above</u> mid-range, <u>stray capacitances</u> associated with the active device lower the gain.
- Also, cascading amplifiers limits the gain at high and low frequencies.

Bode Plot

A Bode plot illustrates the frequency respons of an amplifier.

The horizontal scal indicates the frequency (in Hz) and the vertical scale indicates the gain (in dB).

Cutoff Frequencies

The mid-range of an amplifier is called the bandwidth of the amplifier.

The bandwidth is defined by the lower and upper cutoff frequencies.

Cutoff frequency – any frequency at which the gain has dropped by 3 dB from its mid-range value

BJT Amplifier Low-Frequency Response

At low frequencies, the reactance of the coupling capacitors (C_S, C_C) and the bypass capacitor (C_E) affect the circuit impedances.

Coupling Capacitor (C_S)

The cutoff frequency due to C_s can be calculated using

$$f_{Ls} = \frac{1}{2\pi (R_s + R_i)C_s}$$

$$R_i = R_1 / / R_2 / / \beta R_e$$

Coupling Capacitor (C_c)

The cutoff frequency due to C_C can be calculated using

$$f_{LC} = \frac{1}{2\pi (R_o + R_L)C_c}$$

$$R_o = R_C / / r_o$$

Bypass Capacitor (C_E)

The cutoff frequency due to C_E can be calculated using

$$f_{LE} = \frac{1}{2\pi R_e C_E}$$

where

$$R_e = R_E / (\frac{R_s'}{\beta} + r_e)$$

and

$$R_s' = R_s / / R_1 / / R_2$$

BJT Amplifier Low-Frequency Response

The Bode plot indicates that each capacitor may have a different cutoff frequency.

It is the device that has the *highest* lower cutoff frequency (f_L) that dominates the overall low-frequency response of the amplifier.

Roll-Off of Gain in the Bode Plot

- The Bode plot not only indicates the cutoff frequencies of the various capacitors, it also indicates the amount of attenuation (loss in gain) at these frequencies.
- The rate of attenuation is sometimes referred to as roll-off.

The roll-off is measured in dB-per-octave or dB-per-decade.

Roll-Off Rate (dB/Decade)

-dB/decade refers to the attenuation for every 10-fold change in frequency.

For attenuations at the low-frequency end, it refers to the loss in gain from the lower cutoff frequency to a frequency that is one-tenth the cutoff value.

 f_{LS} = 9kHz gain is 0dB f_{LS} /10 = .9kHz gain is -20dB Thus the roll-off is -20dB/decade

Roll-Off Rate (-dB/Octave)

-dB/octave refers to the attenuation for every 2-fold change in frequency.

For attenuations at the low-frequency end, it refers to the loss in gain from the lower cutoff frequency to a frequency one-half the cutoff value.

This is a little difficult to see on this graph because the horizontal scale is a logarithmic scale.

 f_{LS} = 9kHz gain is 0dB f_{LS} / 2 = 4.5kHz gain is -6dB Therefore the roll-off is 6dB/octave.

FET Amplifier Low-Frequency Response

At low frequencies, the reactances of the coupling capacitors (C_G , C_C) and the bypass capacitor (C_S) affect the circuit impedances.

Coupling Capacitor (CG)

The cutoff frequency due to C_G can be calculated with

$$f_{LC} = \frac{1}{2\pi (R_{sig} + R_i)C_G}$$

$$R_i = R_G$$

Coupling Capacitor (CC)

The cutoff frequency due to C_c can be calculated with

$$f_{LC} = \frac{1}{2\pi (R_o + R_L)C_C}$$

$$R_o = R_D || r_d$$

Bypass Capacitor (CS)

Bypass Capacitor (C_s)

The cutoff frequency due to C_s can be calculated with

$$f_{LS} = \frac{1}{2\pi R_{eq} C_S}$$

$$R_{eq} = R_{S} \| \frac{1}{g_m} \Big|_{r_d \cong \infty \Omega}$$

FET Amplifier Low-Frequency Response

The Bode plot indicates that each capacitor may have a different cutoff frequency.

The capacitor that has the *highest* lower cutoff frequency (f_L) is closest to the actual cutoff frequency of the amplifier.

Miller Capacitance

Any *p-n* junction can develop capacitance. This capacitance becomes noticeable across:

- The BJT base-collector junction in a commonemitter amplifier operating at high frequencies
- The FET gate-drain junction in a common-source amplifier at high frequencies

These capacitances are represented as separate input and output capacitances, called the Miller capacitances.

Miller Input Capacitance (C_{MI})

$$C_{Mi} = (1 - A_{V})C_{f}$$

Note that the amount of Miller capacitance is dependent on interelectrode capacitance from input to output (C_f) and the gain (A_v) .

Miller Output Capacitance (C_{MO})

If the gain (A_v) is considerably greater than 1, then

$$C_{MO} \cong C_f$$

BJT Amplifier High-Frequency Response

Capacitances that affect the high-frequency response are

Junction capacitances C_{be} , C_{bc} , C_{ce}

Wiring capacitances C_{wi} , C_{wo}

Coupling capacitors C_S , C_C

Bypass capacitor C_F

Input High-Frequency Cutoff (fHi)

$$f_{Hi} = \frac{1}{2\pi R_{Thi}C_i}$$

where

$$R_{Thi} = R_s ||R_1||R_2||R_i|$$

and

$$C_{i} = C_{Wi} + C_{be} + C_{Mi}$$

= $C_{Wi} + C_{be} + (1 - A_{V})C_{bc}$

Output High-Frequency Cutoff (fHo)

$$f_{Ho} = \frac{1}{2\pi R_{Tho}C_o}$$

where

$$R_{Tho} = R_C ||R_L|| r_o$$

and

$$C_o = C_{Wo} + C_{ce} + C_{Mo}$$

FET Amplifier High-Frequency Response

Capacitances that affect the high-frequency response:

Junction capacitances

$$C_{qs'}$$
 $C_{qd'}$ C_{ds}

Wiring capacitances

$$C_{wi}$$
 C_{wo}

Coupling capacitors

$$C_{G'}$$
 C_{C}

Bypass capacitor

 C_{S}

Input High-Frequency Cutoff (f_{Hi})

$$f_{Hi} = \frac{1}{2\pi R_{Thi}C_i}$$

$$\boldsymbol{C_i} = \boldsymbol{C_{Wi}} + \boldsymbol{C_{gs}} + \boldsymbol{C_{Mi}}$$

$$C_{Mi} = (1 - A_{V})C_{gd}$$

$$R_{Thi} = R_{sig} || R_{G}$$

Output High-Frequency Cutoff (f_{Ho})

$$f_{Ho} = \frac{1}{2\pi R_{Tho}C_o}$$

$$C_o = C_{Wo} + C_{ds} + C_{Mo}$$

$$C_{Mo} = \left(1 - \frac{1}{A_{V}}\right)C_{gd}$$

$$R_{Tho} = R_D || R_L || r_d$$

Multistage Frequency Effects

Each stage has its own frequency response, but the output of each stage is affected by capacitances in the subsequent stage. For example, the output capacitance (C_o) is affected by the input Miller Capacitance (C_{Mi}) of the next stage.

Multistage Amplifier Response

Once the cutoff frequencies have been determined for each stage (taking into account the shared capacitances), they can be plotted.

Note the *highest* lower cutoff frequency (f_L) and the *lowest* upper cutoff frequency (f_H) are closest to the actual response of the amplifier.

Square Wave Testing

In order to determine the frequency response of an amplifier by experimentation, you must apply a wide range of frequencies to the amplifier.

One way to accomplish this is to apply a square wave. A square wave consists of multiple frequencies (by Fourier analysis: it consists of odd harmonics).

Square Wave Response Waveforms

If the output of the amplifier is not a perfect square wave then the amplifier is 'cutting' off certain frequency components of the square wave.