

BME 202 Electronics

Lecture 9: Field Effect Transistors – Part 1

FETs vs. BJTs

Similarities:

Amplifiers Switching devices Impedance matching circuits

Differences: FETs are voltage controlled devices. BJTs are current controlled devices.

FETs have higher input impedance. BJTs have higher gain.

FETs are less sensitive to temperature variations and are better suited for integrated circuits

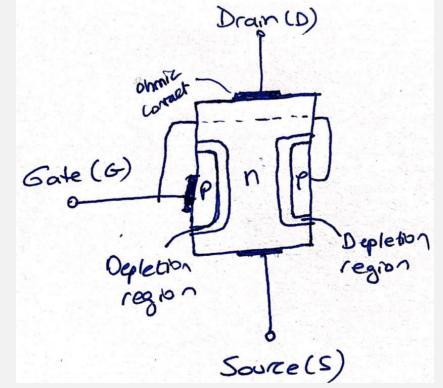
FETs are generally more static sensitive than BJTs.

JFET: Junction FET

MOSFET: Metal–Oxide–Semiconductor FET

D-MOSFET: Depletion MOSFET

E-MOSFET: Enhancement MOSFET


There are two types of JFETs: *n*-channel *p*-channel

The n-channel is the more widely used of the two.

JFETs have three terminals:

The **Drain** (D) and **Source** (S) are connected to the *n*-channel

The Gate (G) is connected to the *p*-type material

JFET operation can be compared to that of a water spigot.

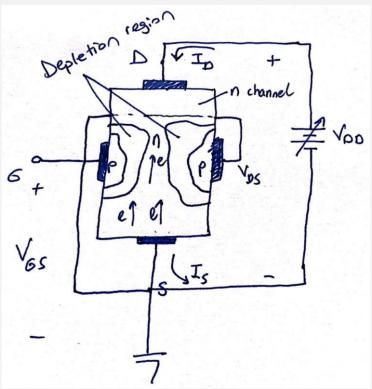
The **source** is the accumulation of electrons at the negative pole of the drain-source voltage.

The drain is the electron deficiency (or holes) at the positive pole of the applied voltage.

The **gate** controls the width of the n-channel and, therefore, the flow of charges from source to drain.

There are three basic operating conditions for a JFET:

- $V_{GS} = 0$ V, V_{DS} increasing to some positive value
- $V_{GS} < 0$ V, V_{DS} at some positive value
- Voltage-controlled resistor



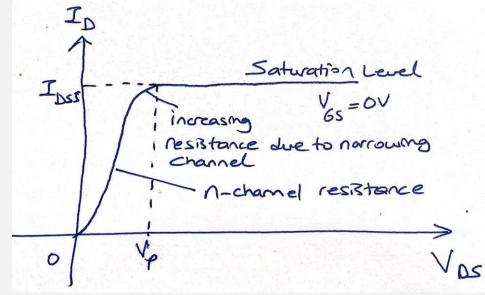
Three things happen when $V_{GS} = 0$ V and V_{DS} increases from 0 V to a more positive voltage:

• The size of the depletion region between *p*- type gate and *n*-channel increases.

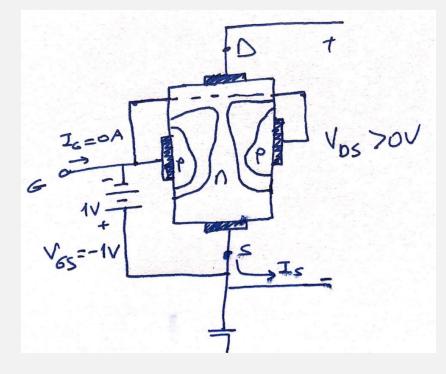
• Increasing the size of the depletion region decreases the width of the *n*-channel, which increases its resistance.

• Even though the *n*-channel resistance is increasing, the current from source to drain (I_D) through the *n*-channel is increasing because V_{DS} is increasing.

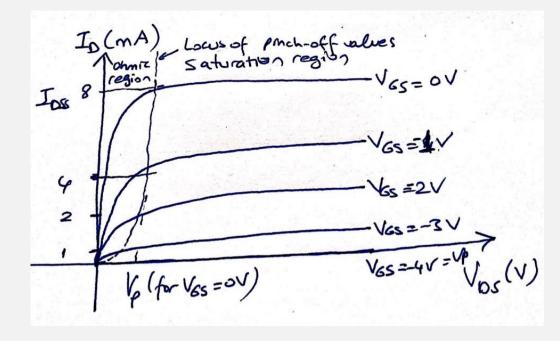
• If $V_{GS} = 0$ V and V_{DS} continually increases to a more positive voltage, a point is reached where the depletion region gets so large that it pinches off the channel.


• This suggests that the current in channel (I_D) drops to 0 A, but it does not: As V_{DS} increases, so does I_D . However, once pinch off occurs, further increases in V_{DS} do not cause I_D to increase.

At the pinch-off point:


Any further increase in V_{DS} does not produce any increase in I_D . V_{DS} at pinch-off is denoted as V_D

 I_D is at saturation or maximum, and is referred to as I_{DSS} .

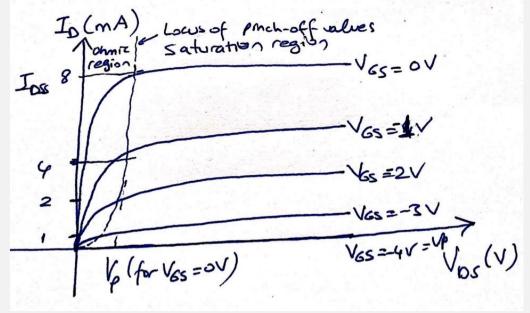

As V_{GS} becomes more negative, the depletion region increases.

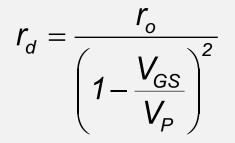
JFET Operating Characteristics

As V_{GS} becomes more negative:

- The JFET experiences pinch-off at a lower voltage (V_p) .
- I_D decreases ($I_D < I_{DSS}$) even when V_{DS} increases
- I_D eventually drops to 0 A. The value of V_{GS} that causes this to occur is designated $V_{GS(off)}$.

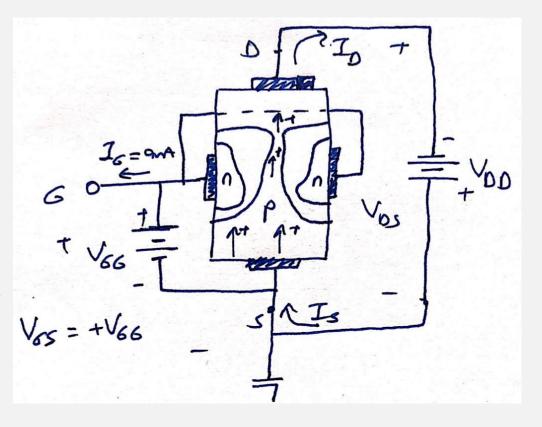
Note that at high levels of V_{DS} the JFET reaches a breakdown situation. I_D increases uncontrollably if $V_{DS} > V_{DSmax}$, and the JFET is likely destroyed.



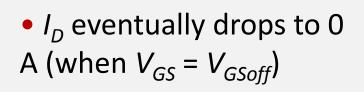

Voltage-Controlled Resistor

The region to the left of the pinch-off point is called the **ohmic region**.

The JFET can be used as a variable resistor, where V_{GS} controls the drain-source resistance (r_d) .



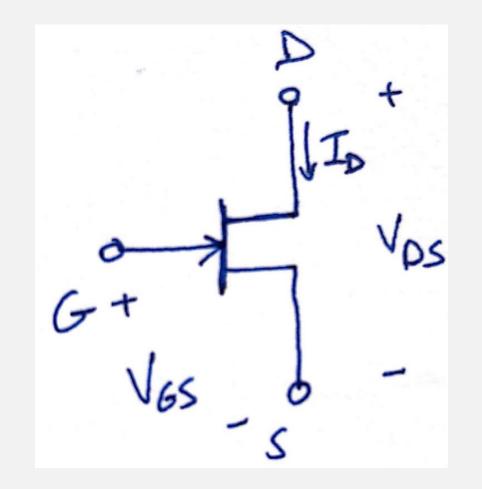
As V_{GS} becomes more *negative*, the resistance (r_d) *increases*.



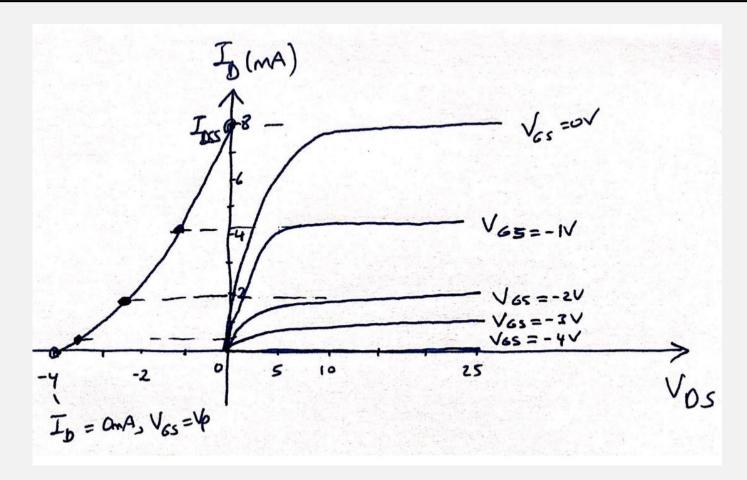
The *p*-channel JFET behaves the same as the *n*-channel JFET. The only differences are that the voltage polarities and current directions are reversed.

As V_{GS} becomes more positive:

- The JFET experiences pinchoff at a lower voltage (V_P) .
- The depletion region increases, and I_D decreases (< I_{DSS})


Also note that at high levels of V_{DS} the JFET reaches a breakdown situation: I_D increases uncontrollably if $V_{DS} > V_{DSmax}$.

N-Channel JFET Symbol


JFET input-to-output transfer characteristics are not as straightforward as they are for a BJT.

- BJT: β indicates the relationship between I_B (input) and I_C (output).
- JFET: The relationship of V_{GS} (input) and I_D (output) is a little more complicated:

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

JFET Transfer Curve

This graph shows the value of I_D for a given value of V_{GS} .

Using I_{DSS} and V_p ($V_{GS(off)}$) values found in a specification sheet, the transfer curve can be plotted according to these three steps:

1. Solving for
$$V_{GS} = 0$$
 V: $I_D = I_{DSS}$

2. Solving for
$$V_{GS} = V_{GS(off)}$$
: $I_D = 0$ A $I_D = I_{DS}$

$$\mathbf{I}_{\mathrm{D}} = \mathbf{I}_{\mathrm{DSS}} \left(1 - \frac{\mathbf{V}_{\mathrm{GS}}}{\mathbf{V}_{\mathrm{P}}} \right)^2$$

3. Solving for $V_{GS} = 0$ V to $V_{GS(off)}$: 0 A < I_D < I_{DSS}

JFET Specification Sheet

Electrical Characteristics

Symbol	Parameter	Test Conditions	I	Min	Тур	Max	Units
OFF CH	ARACTERISTICS	-					
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_{G} = 10 \ \mu A, V_{DS} = 0$		-25			v
I _{GSS}	Gate Reverse Current	$V_{GS} = -15 \text{ V}, V_{DS} = 0$ $V_{GS} = -15 \text{ V}, V_{DS} = 0, T_A = 100^{\circ}\text{C}$				-1.0 -200	nA nA
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = 15 \text{ V}, I_D = 10 \text{ nA}$ 54	57 -	-0.5		-6.0	V
V _{GS}	Gate-Source Voltage	$V_{DS} = 15 \text{ V}, I_D = 100 \ \mu\text{A}$ 54	57		-2.5		V
I _{DSS} SMALL	Zero-Gate Voltage Drain Current	$V_{DS} = 15 \text{ V}, V_{GS} = 0$ 54	57	1.0	3.0	5.0	mA
g _{fs}	Forward Transfer Conductance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, \text{ f} = 1.0 \text{ kHz}$ 54	57	1000		5000	µmho
	Output Conductance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, \text{ f} = 1.0 \text{ MHz}$			10	50	µmho
g _{os}		NI ISTUN OCIONI			4.5	7.0	pF
g _{os} C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, \text{ f} = 1.0 \text{ MHz}$					
	Input Capacitance Reverse Transfer Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$ $V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$			1.5	3.0	pF

JFET Specification Sheet

FAIRCHILD **Maximum Ratings** SEMICONDUCTOR TM 2N5457 **MMBF5457 ABSOLUTE MAXIMUM RATINGS** G **Parameter** Value Units Symbol V_{DS} Drain-Source Voltage 25 V s D **TO-92 SOT-23** VDG Drain-Gate Voltage 25 V **NOTE: Source & Drain** V_{GS} V Gate-Source Voltage -25are interchangeable I_{GF} Forward Gate Current 10 **N-Channel General Purpose Amplifier** mA This device is a low-level audio amplifier and Operating and Storage Junction switching transistor, and can be used for T_j, T_{stg} °C -55 to +150 **Temperature Range** analog switching applications.

Curve Tracer

A curve tracer displays the I_D versus V_{DS} graph for various levels of V_{GS} .

Specialized FET Testers

These testers show I_{DSS} for the JFET under test.

MOSFETs have characteristics similar to those of JFETs and additional characteristics that make then very useful.

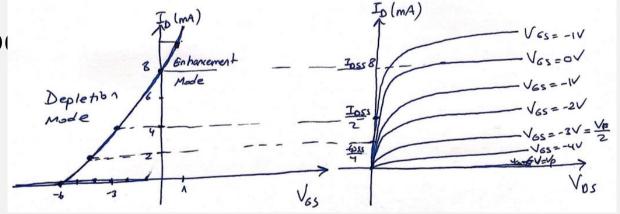
There are two types of MOSFETs:

Depletion-Type

Enhancement-Type

The Drain (D) and Source (S) connect to the to *n*-type regions. These *n*-typed regions are connected via an *n*-channel. This *n*-channel is connected to the Gate (G) via a thin insulating layer of silicon dioxide (SiO₂).

The *n*-type material lies on a *p*-type substrate that may have an additional terminal connection called the Substrate (SS).


Basic MOSFET Operation

A depletion-type MOSFET can operate in two modes:

Depletion mode

Enhancement mo

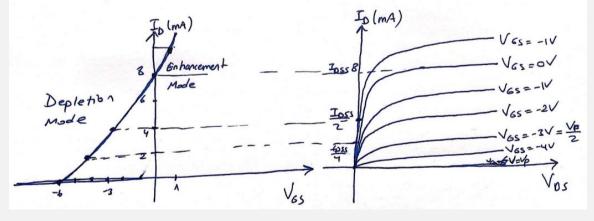
Depletion Mode Operation

(D-MOSFET)

The characteristics are similar to a JFET.

when $V_{GS} = 0$ V, $I_D = I_{DSS}$ when $V_{GS} < 0$ V, $I_D < I_{DSS}$

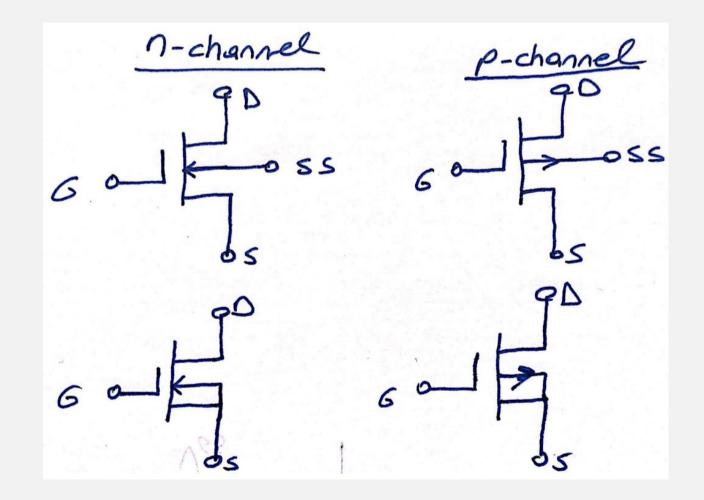
The formula used to plot the transfer curve for a JFET applies to a D-MOSFET as well:


$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

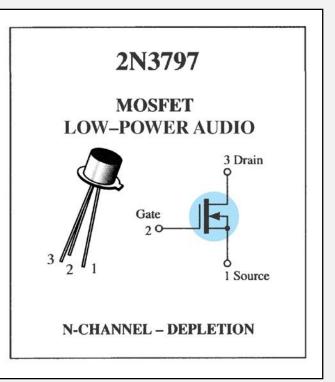
(D-MOSFET)

 $V_{GS} > 0 V, I_D$ increases above I_{DSS} $(I_D > I_{DSS})$

The formula used to plot the transfer curve still applies:


$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

Note that V_{GS} is now positive



Maximum Ratings

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain–Source Voltage 2N3797	V _{DS}	20	Vdc
Gate-Source Voltage	V _{GS}	±10	Vdc
Drain Current	ID	20	mAdc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above 25°C	P _D	200 1.14	mW mW/°C
Junction Temperature Range	Тј	+175	°C
Storage Channel Temperature Range	T _{stg}	-65 to +200	°C

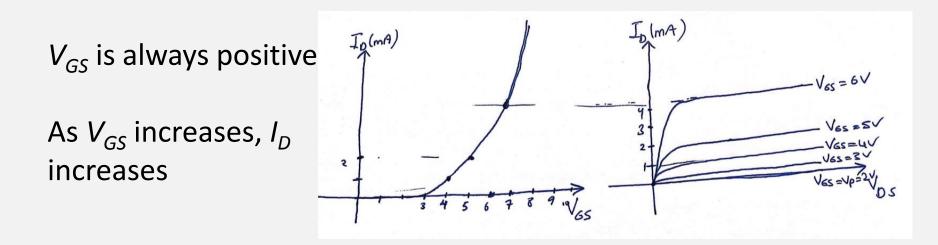
Specification Sheet

Electrical Characteristics

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain Source Breakdown Voltage ($V_{GS} = -7.0 V, I_D = 5.0 \mu A$)	2N3797	V _{(BR)DSX}	20	25	-	Vdc
Gate Reverse Current (1) $(V_{GS} = -10 \text{ V}, V_{DS} = 0)$ $(V_{GS} = -10 \text{ V}, V_{DS} = 0, T_A = 150^{\circ}\text{C})$		I _{GSS}	1 1		1.0 200	pAdc
Gate Source Cutoff Voltage ($I_D = 2.0 \ \mu A, V_{DS} = 10 \ V$)	2N3797	V _{GS(off)}	-	-5.0	-7.0	Vdc
Drain-Gate Reverse Current (1) ($V_{DG} = 10 \text{ V}, 1_S = 0$)		l _{DGO}	-	-	1.0	pAdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current ($V_{DS} = 10 \text{ V}, V_{GS} = 0$)	2N3797	I _{DSS}	2.0	2.9	6.0	mAdc
On-State Drain Current ($V_{DS} = 10 \text{ V}, V_{GS} = +3.5 \text{ V}$)	2N3797	I _{D(on)}	9.0	14	18	mAde
SMALL-SIGNAL CHARACTERISTICS						
Forward Transfer Admittance $(V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz})$	2N3797	y _{fs}	1500	2300	3000	μmhos
$(V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz})$	2N3797		1500	-	1	
Output Admittance ($1_{DS} = 10$ V, V $_{GS} = 0$, f = 1.0 kHz)	2N3797	y _{os}	-	27	60	µmhos
Input Capacitance $(V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz})$	2N3797	C _{iss}	-	6.0	8.0	pF
Reverse Transfer Capacitance ($V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$)		C _{rss}	-	0.5	0.8	pF
FUNCTIONAL CHARACTERISTICS						
Noise Figure ($V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz}, R_S = 3 \text{ megohms}$)		NF	-	3.8	-	dB

E-Type MOSFET Construction

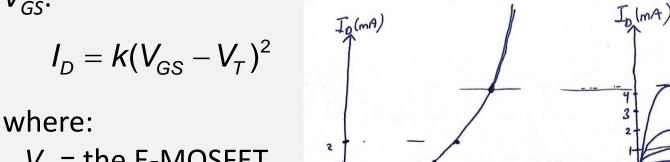
The Drain (D) and Source (S) connect to the to *n*-type regions. These *n*-type regions are connected via an *n*-channel


The Gate (G) connects to the p-type substrate via a thin insulating layer of silicon dioxide (SiO₂)

There is no channel

The *n*-type material lies on a *p*-type substrate that may have an additional terminal connection called the Substrate (SS)

The enhancement-type MOSFET (E-MOSFET) operates only in the enhancement mode.



As V_{GS} is kept constant and V_{DS} is increased, then I_D saturates (I_{DSS}) and the saturation level (V_{DSSat}) is reached

 $V_{65} = 6V$

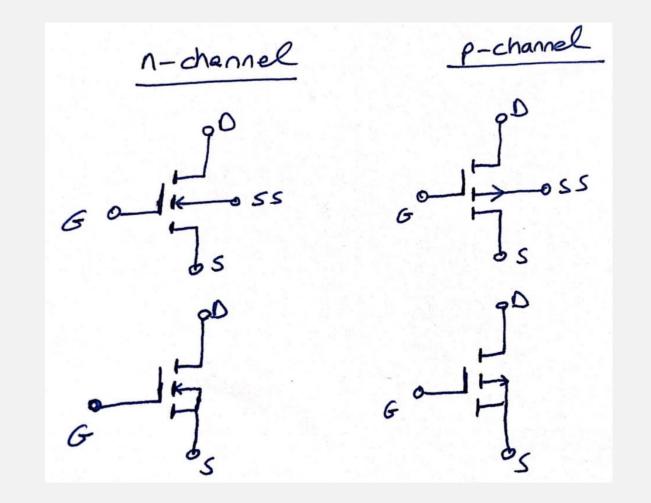
To determine I_D given V_{GS} :

$$T_T = \text{the E-MOSFET}$$

threshold voltage
 $V_{6S} = V_{6S}$

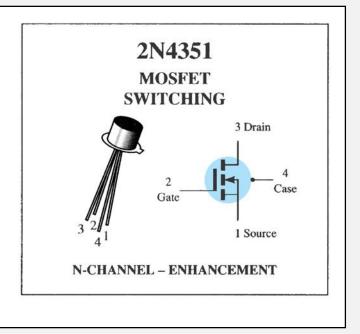
k, a constant, can be determined by using values at a specific point and the formula:

$$k = \frac{I_{D(ON)}}{(V_{GS(ON)} - V_T)^2}$$


 V_{DSsat} can be calculated using:

$$V_{DSsat} = V_{GS} - V_{T}$$

The *p*-channel enhancement-type MOSFET is similar to its *n*-channel counterpart, except that the voltage polarities and current directions are reversed.



Maximum Ratings

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain–Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage*	V _{GS}	30	Vdc
Drain Current	ID	30	mAdc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above 25°C	P _D	300 1.7	mW mW/°C
Junction Temperature Range	Tj	175	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

* Transient potentials of ± 75 Volt will not cause gate-oxide failure.

Specification Sheet

Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Drain-Source Breakdown Voltage ($I_D = 10 \ \mu$ A, $V_{GS} = 0$)	V _{(BR)DSX}	25	-	Vdc
Zero-Gate-Voltage Drain Current $(V_{DS} = 10 \text{ V}, V_{GS} = 0) \text{ T}_A = 25^{\circ}\text{C}$ $T_A = 150^{\circ}\text{C}$	I _{DSS}	-	10 10	nAdc µAdc
Gate Reverse Current $(V_{GS} = \pm 15 \text{ Vdc}, V_{DS} = 0)$	I _{GSS}	-	± 10	pAdc
ON CHARACTERISTICS				
Gate Threshold Voltage $(V_{DS} = 10 \text{ V}, I_D = 10 \mu \text{A})$	V _{GS(Th)}	1.0	5	Vdc
Drain-Source On-Voltage ($I_D = 2.0 \text{ mA}, V_{GS} = 10V$)	V _{DS(on)}	-	1.0	v
On-State Drain Current ($V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V}$)	I _{D(on)}	3.0	-	mAdo
SMALL-SIGNAL CHARACTERISTICS				
Forward Transfer Admittance ($V_{DS} = 10 \text{ V}, I_D = 2.0 \text{ mA}, f = 1.0 \text{ kHz}$)	y _{fs}	1000	=	µmho
Input Capacitance $(V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 140 \text{ kHz})$	C _{iss}	-	5.0	pF
Reverse Transfer Capacitance $(V_{DS} = 0, V_{GS} = 0, f = 140 \text{ kHz})$	C _{rss}	-	1.3	pF
Drain-Substrate Capacitance (V _{D(SUB)} = 10 V, f = 140 kHz)	C _{d(sub)}	~	5.0	pF
Drain-Source Resistance ($V_{GS} = 10 \text{ V}, I_D = 0, f = 1.0 \text{ kHz}$)	r _{ds(on)}	-	300	ohms
SWITCHING CHARACTERISTICS				
Turn-On Delay (Fig. 5)	t _{d1}	-	45	ns
Rise Time (Fig. 6) $I_D = 2.0 \text{ mAdc}, V_{DS} = 10 \text{ Vdc},$ (V _{GS} = 10 Vdc)	t _r		65	ns
Turn-Off Delay (Fig. 7) $(V_{GS} = 10 V_{GC})$ (See Figure 9; Times Circuit Determined)	t _{d2}	-	60	ns
Fall Time (Fig. 8)	t _f		100	ns

MOSFETs are very sensitive to static electricity.

Because of the very thin SiO_2 layer between the external terminals and the layers of the device, any small electrical discharge can create an unwanted conduction.

Protection

- Always transport in a static sensitive bag
- Always wear a static strap when handling MOSFETS
- Apply voltage limiting devices between the gate and source, such as back-to-back Zeners to limit any transient voltage.

VMOS (vertical MOSFET) is a component structure that provides greater surface area.

Advantages

VMOS devices handle higher currents by providing more surface area to dissipate the heat.

VMOS devices also have faster switching times.

CMOS (complementary MOSFET) uses a p-channel and n-channel MOSFET; often on the same substrate as shown here.

Advantages

- Useful in logic circuit designs
- Higher input impedance
- Faster switching speeds
- Lower operating power levels