

BME 202 Electronics

Lecture 11: FET Biasing

Common FET Biasing Circuits

JFET Biasing Circuits

Fixed-Bias

Self-Bias

Voltage-Divider Bias

D-Type MOSFET Biasing Circuits

Self-Bias

Voltage-Divider Bias

E-Type MOSFET Biasing Circuits

Feedback Configuration

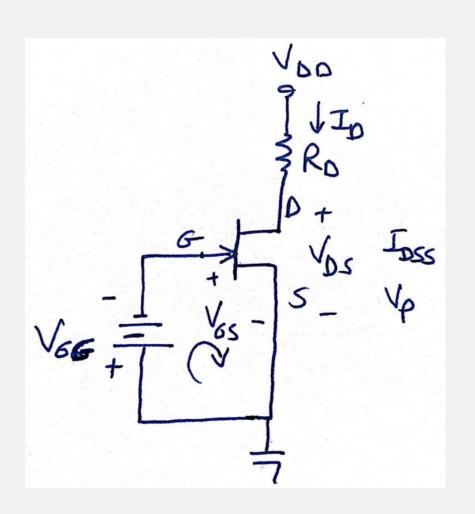
Voltage-Divider Bias

Basic Current Relationships

For all FETs:

$$I_G \cong 0 \text{ A}$$
 $I_D = I_S$

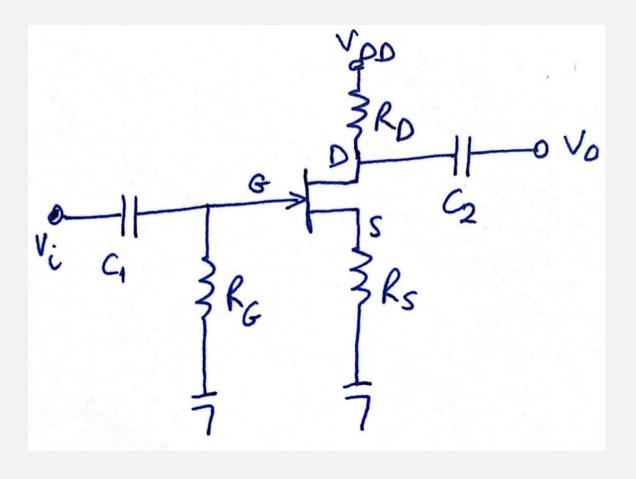
For JFETS and D-Type MOSFETs:


$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

For E-Type MOSFETs:

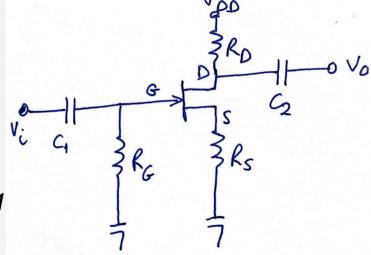
$$I_D = k(V_{GS} - V_T)^2$$

Fixed-Bias Configuration



$$egin{aligned} V_{DS} &= V_{DD} - I_D R_D \ V_S &= 0 \ V \ V_C &= V_{DS} \ V &= V_{GS} \ V_{GS} &= -V_{GG} \end{aligned}$$

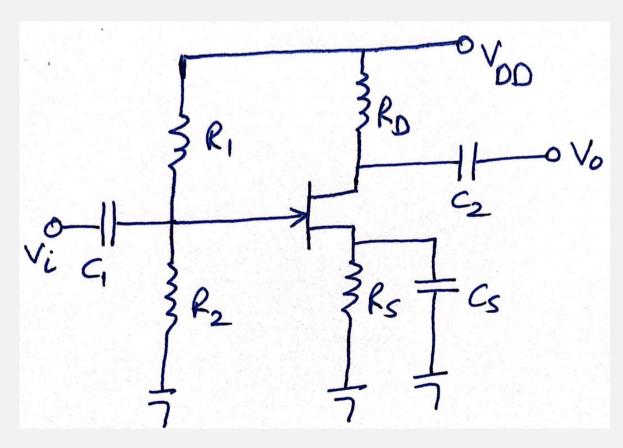
Self-Bias Configuration


Self-Bias Calculations

$$V_{GS} = -I_D R_S$$

- 1. Select a value of $I_D < I_{DSS}$ and use the component value of R_S to calculate V_{GS} . Plot the point identified by I_D and V_{GS} and draw a line from the origin of the axis to this point.
- 2. Plot the transfer curve using I_{DSS} and V_P $(V_P = |V_{GSoff}| \text{ on spec sheets})$ and a few points such as $V_{GS} = V_P / 4$ and $V_{GS} = V_P / 2$ etc.

The Q-point is located where the first line intersects the transfer curve. Using the value of I_D at the Q-point (I_{DO}) :


$$V_{DS} = V_{DD} - I_D (R_S + R_D)$$

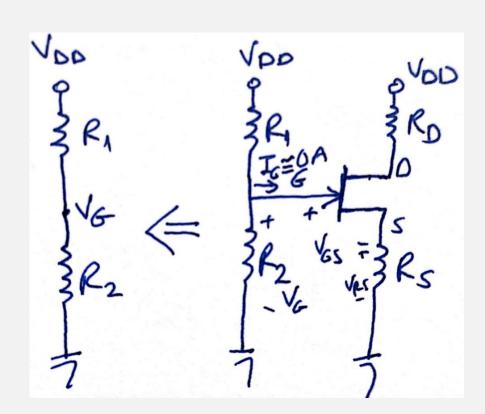
$$V_S = I_D R_S$$

$$V_S = I_D R_S \qquad V_D = V_{DS} + V_S = V_{DD} - V_{RD}$$

Voltage-Divider Bias

- $I_G = 0 \text{ A}$
- I_D responds to changes in V_{GS}

Voltage-Divider Bias Calculations



 V_G is equal to the voltage across divider resistor R_2 :

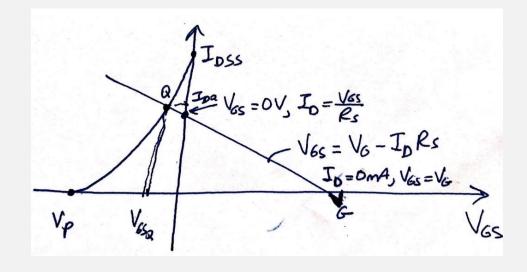
$$V_{G} = \frac{R_{2}V_{DD}}{R_{1} + R_{2}}$$

Using Kirchhoff's Law:

$$V_{GS} = V_G - I_D R_S$$

The Q-point is established by plotting a line that intersects the transfer curve.

Voltage-Divider Q-Point



Plot the line that is defined by these two points:

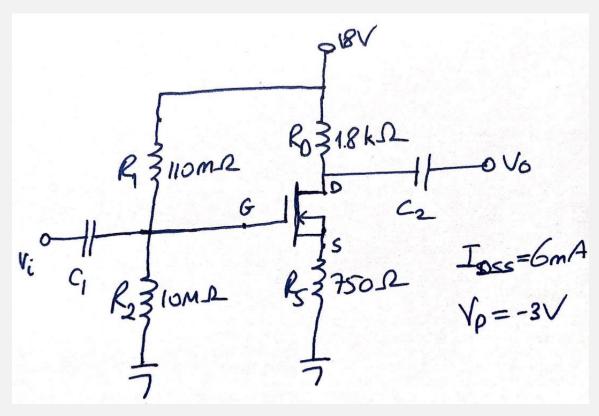
$$V_{GS} = V_G$$
, $I_D = 0$ A

$$V_{GS} = 0 \text{ V}, I_D = V_G / R_S$$

Plot the transfer curve by plotting I_{DSS} , V_P and the calculated values of I_D

The Q-point is located where the line intersects the transfer curve

Voltage-Divider Bias Calculations



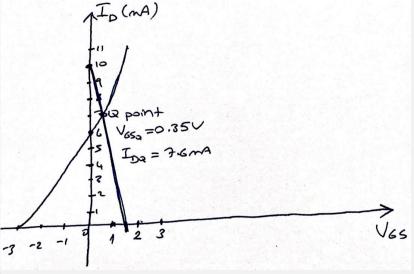
Using the value of I_D at the Q-point, solve for the other values in the voltage-divider bias circuit:

$$egin{aligned} V_{DS} &= V_{DD} - I_D (R_D + R_S) \ V_D &= V_{DD} - I_D R_D \ V_S &= I_D R_S \end{aligned}$$

D-Type MOSFET Bias Circuits

Depletion-type MOSFET bias circuits are similar to those used to bias JFETs. The only difference is that D-type MOSFETs can operate with positive values of V_{GS} and with I_D values that exceed I_{DSS} .

Self-Bias Q-Point (D-MOSFET)



Plot the line that is defined by these two points:

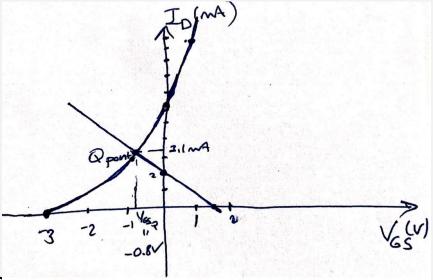
$$V_{GS} = V_G$$
, $I_D = 0$ A
 $I_D = V_G/R_S$, $V_{GS} = 0$ V

Plot the transfer curve using I_{DSS} , V_P and calculated values of I_D .

The Q-point is located where the line intersects the transfer curve. Use the value of I_D at the Q-point to solve for the other circuit values.

These are the same steps used to analyze JFET self-bias circuits.

Voltage-Divider Bias (D-MOSFET)

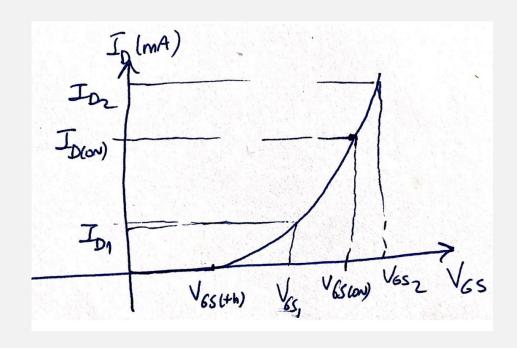


Plot the line that is defined by these two points:

$$V_{GS} = V_G$$
, $I_D = 0$ A
 $I_D = V_G/R_S$, $V_{GS} = 0$ V

Plot the transfer curve using I_{DSS} , V_P and calculated values of I_D .

The Q-point is located where the line intersects the transfer curve. Use the value of I_D at the Q-point to solve for the other variables in the circuit.

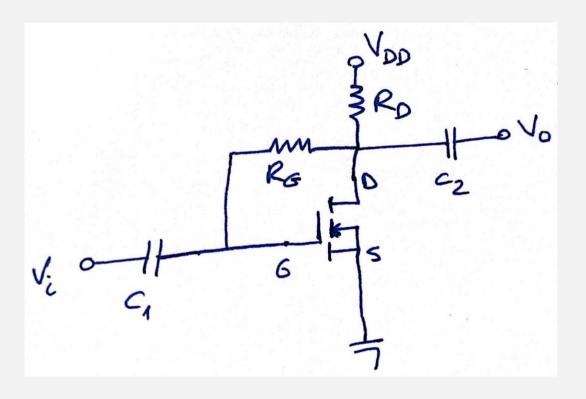


These are the same steps used to analyze JFET voltage-divider bias circuits.

E-Type MOSFET Bias Circuits

The transfer curve for the E-MOSFET is very different from that of a simple JFET or D-MOSFET.

Feedback Bias Circuit (E-MOSFET)



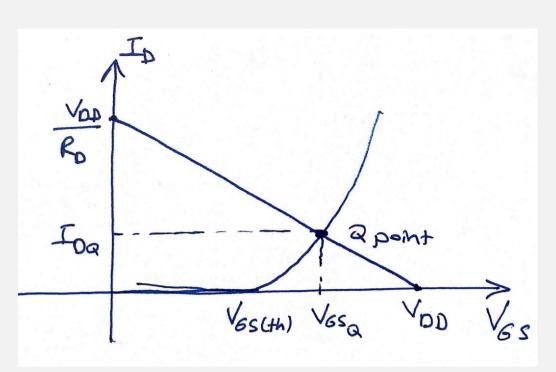
$$I_G = 0 A$$

$$V_{RG} = 0 \text{ V}$$

$$V_{DS} = V_{GS}$$

$$V_{GS} = V_{DD} - I_D R_D$$

Feedback Bias Q-Point (E-MOSFET)


Plot the line that is defined by these two points:

$$V_{GS} = V_{DD}$$
, $I_D = 0$ A
 $I_D = V_{DD} / R_D$, $V_{GS} = 0$ V

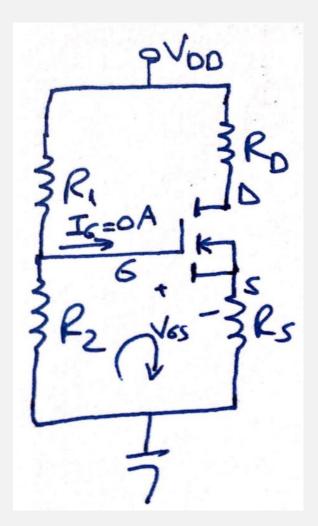
Using these values from the spec sheet, plot the transfer curve:

$$V_{GSTh}$$
 , $I_D = 0$ A $V_{GS(on)}$, $I_{D(on)}$

The Q-point is located where the line and the transfer curve intersect

Using the value of I_D at the Q-point, solve for the other variables in the circuit

Voltage-Divider Biasing



Plot the line and the transfer curve to find the Q-point using these equations:

$$V_{G} = \frac{R_{2}V_{DD}}{R_{1} + R_{2}}$$

$$V_{GS} = V_{G} - I_{D}R_{S}$$

$$V_{DS} = V_{DD} - I_{D}(R_{S} + R_{D})$$

Voltage-Divider Bias Q-Point (E-MOSFET)

Plot the line using

$$V_{GS} = V_G$$
, $I_D = 0$ A

$$I_D = V_G / R_S$$
 , $V_{GS} = 0 \text{ V}$

Using these values from the spec sheet, plot the transfer curve:

$$V_{GSTh}$$
, $I_D = 0$ A

$$V_{GS(on)}$$
, $I_{D(on)}$

The point where the line and the transfer curve intersect is the Q-point.

Using the value of I_D at the Q-point, solve for the other circuit values.

p-Channel FETs

For *p*-channel FETs the same calculations and graphs are used, except that the voltage polarities and current directions are reversed.

The graphs are mirror images of the *n*-channel graphs.

Applications

- Voltage-controlled resistor
- JFET voltmeter
- Timer network
- Fiber optic circuitry
- MOSFET relay driver