THROMBOCYTE FUNCTION: HEMOSTASIS

Hematopoietic System and Disorders (MED202)

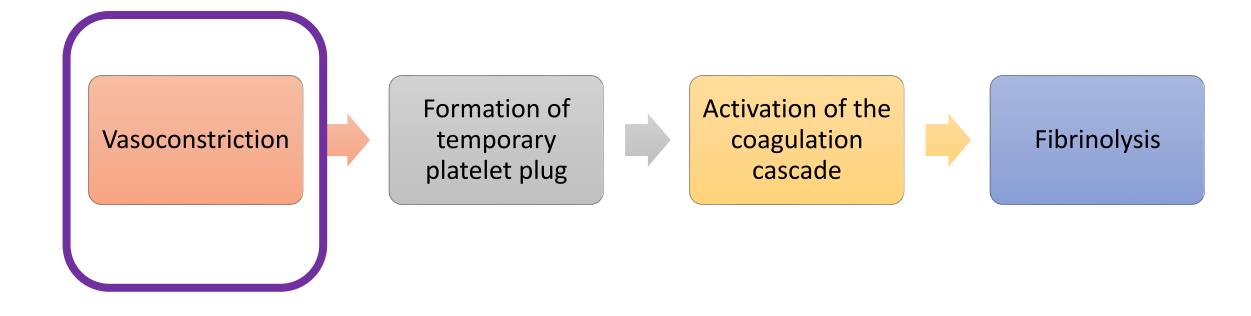
Assoc. Prof. Güvem GÜMÜŞ AKAY

Ankara University School of Medicine

Department of Physiology

Lecture Outline

- Mechanism of hemostasis
 - Vasoconstriction
 - Formation and regulation of thrombocyte-fibrin plug
 - Mechanisms of blood coagulation (extrinsic and intrinsic pathways)
 - Mechanisms of fibrinolysis
- Anticoagulant mechanisms
- Procoagulant-anticoagulant factors


Functional characteristics of platelets

- Actin and myosin molecules, and thrombosthenin can cause the platelets to contract
- Residuals of both the *endoplasmic reticulum* and the Golgi apparatus that synthesize various enzymes and especially store large quantities of calcium ions.
- Mitochondria and enzyme systems that are capable of forming ATP and ADP
- Enzyme systems that synthesize prostaglandins, which are local hormones that cause many vascular and other local tissue reactions

✓ Fibrin-stabilizing factor, in relation to blood coagulation

A growth factor that causes vascular endothelial cells, vascular smooth muscle cells, and fibroblasts to multiply and grow, thus helping repair of damaged vascular walls

Hemostasis: Preventing blood loss, stop bleeding

1. Vasoconstriction

Occurs immediately after a blood vessel has been damaged.

- \checkmark Is the fastest occurring stage
- Trauma to the vessel causes smooth muscle in the vessel wall to contract.
- \checkmark Reduces the flow of blood from the ruptured vessel.

Vasoconstriction

✓ Perfomed by

- Platelet-derived vasoconstrictor agents (eg. Thromboxane A2) attached to the damaged area
- Mechanical stimulation of the perivascular nerves
- The more severely a vessel is traumatized, the greater the degree of vascular spasm.
- ✓ Can last for many minutes or even hours

Vasoconstriction

Formation of temporary platelet plug Activation of the coagulation cascade

Fibrinolysis

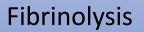
2. Formation of temporary platelet plug

- In physiological conditions platelet's surface is a coat of **glycoproteins** that repulses adherence to normal endothelium.
- However, the same coat causes adherence to injured areas of the vessel wall
- When platelets come in contact with a damaged vascular surface, they rapidly change their own characteristics drastically.
 - Especially with collagen fibers in the vascular wall

Formation of temporary platelet plug

- Platelets begin to swell
- Assume irregular forms with numerous irradiating pseudopods protruding from their surfaces
- Contractile proteins contract forcefully and cause the release of granules that contain multiple active factors
 - TXA2, ADP
- Become sticky
- Adhere to collagen in the tissues and to a protein called *von Willebrand factor (vWF)* that leaks into the traumatized tissue from the plasma

Formation of temporary platelet plug

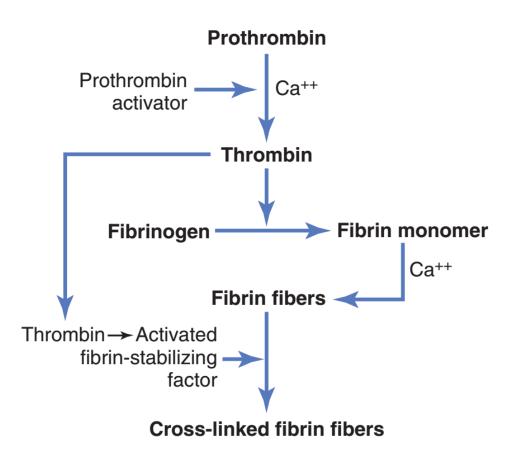

- The ADP and TXA2 in turn act on nearby platelets to activate them as well
- The stickiness of these additional platelets causes them to adhere to the original activated platelets
- Platelet plug

Formation of temporary platelet plug

- The plug is loose at first, but it is usually successful in blocking blood loss if the vascular opening is small.
- During the subsequent process of blood coagulation, *fibrin threads* form
- Fibrin threads attach tightly to the platelets, thus constructing an unyielding plug

Formation of temporary platelet plug Activation of the coagulation cascade

3. Activation of Blood Coagulation Cascade


- The clot begins to develop
 - in 15 to 20 s if the trauma to the vascular wall has been severe
 - in 1 to 2 min if the trauma has been minor
 - Within 3 to 6 minutes after rupture of a vessel, the entire opening or broken end of the vessel is filled with
 - 20 minutes an hour, the clot retracts, which closes the vessel still further
- Activator substances from
 - injured vascular wall
 - Platelets
 - blood proteins adhering to the traumatized vascular wall

initiate the clotting process

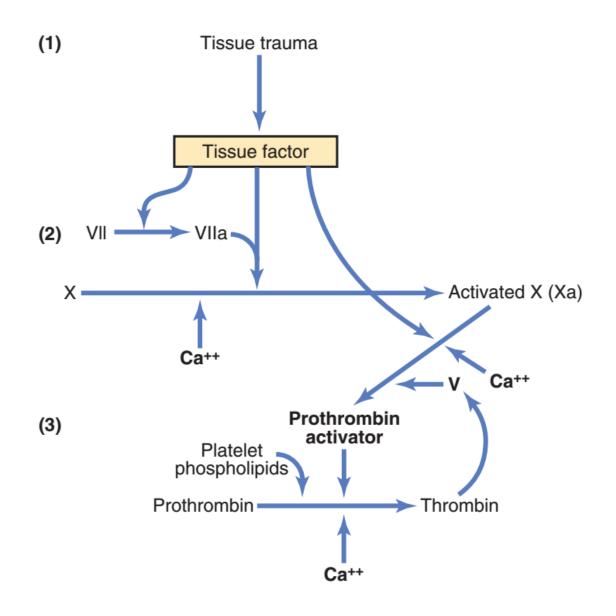
Clot formation

Clotting takes place in three essential steps:

- i. Formation of **Prothrombin Activator**
- ii. Conversion of prothrombin to **thrombin**
- iii. Conversion of fibrinogen to **fibrin**

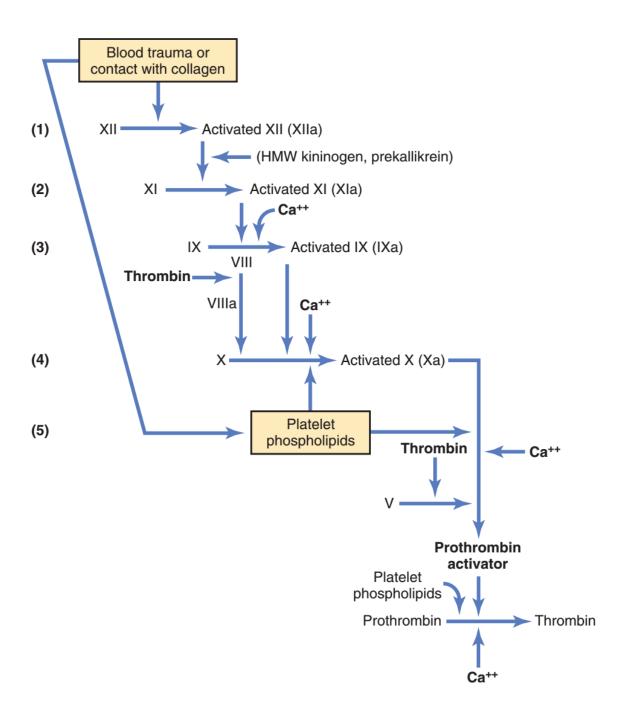
i. Formation of Protrombin Activator

- As a result of
 - 1) rupture of a blood vessel damage to special substances in the blood
 - 2) contact of the blood with damaged endothelial cells or with collagen and other tissue elements outside the blood vessel
- is the rate-limiting factor in causing blood coagulation
- causes conversion of prothrombin to thrombin and all the subsequent clotting steps

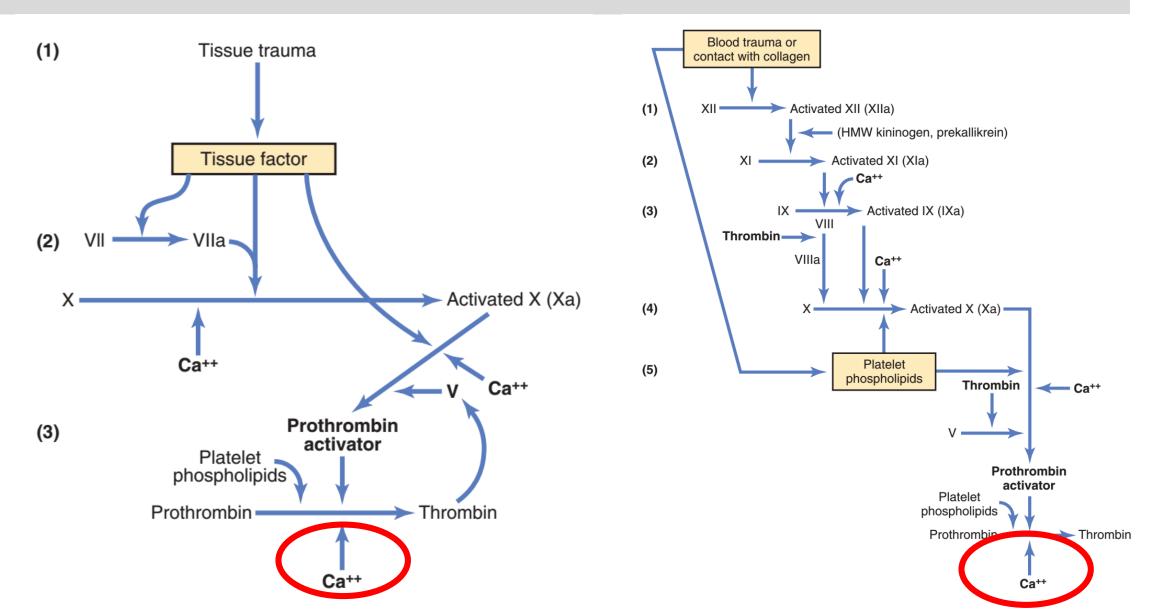

Prothrombin activator is generally considered to be formed in two ways

- Extrinsic pathway: begins with trauma to the vascular wall and surrounding tissues
- Intrinsic pathway: begins in the blood
- A series of different plasma proteins called *blood-clotting factors* plays a major role
- *inactive* forms of proteolytic enzymes
- active forms cause the successive cascading reactions of the clotting process
- a:indicates an active form

Fibrinogen		
normogen	Factor I	
Prothrombin	Factor II	
Tissue factor	Factor III; tissue thromboplastin	
Calcium	Factor IV	
Factor V	Proaccelerin; labile factor; Ac-globulin (Ac-G)	
Factor VII	Serum prothrombin conversion accelerator (SPCA); proconvertin; stable factor	
Factor VIII	Antihemophilic factor (AHF); antihemophilic globulin (AHG); antihemophilic factor A	
Factor IX	Plasma thromboplastin component (PTC); Christmas factor; antihemophilic factor B	
Factor X	Stuart factor; Stuart-Prower factor	
Factor XI	Plasma thromboplastin antecedent (PTA); antihemophilic factor C	
Factor XII	Hageman factor	
Factor XIII	Fibrin-stabilizing factor	
Prekallikrein	Fletcher factor	
High-molecular- weight kininogen	Fitzgerald factor; HMWK (high- molecular-weight kininogen)	
Platelets		

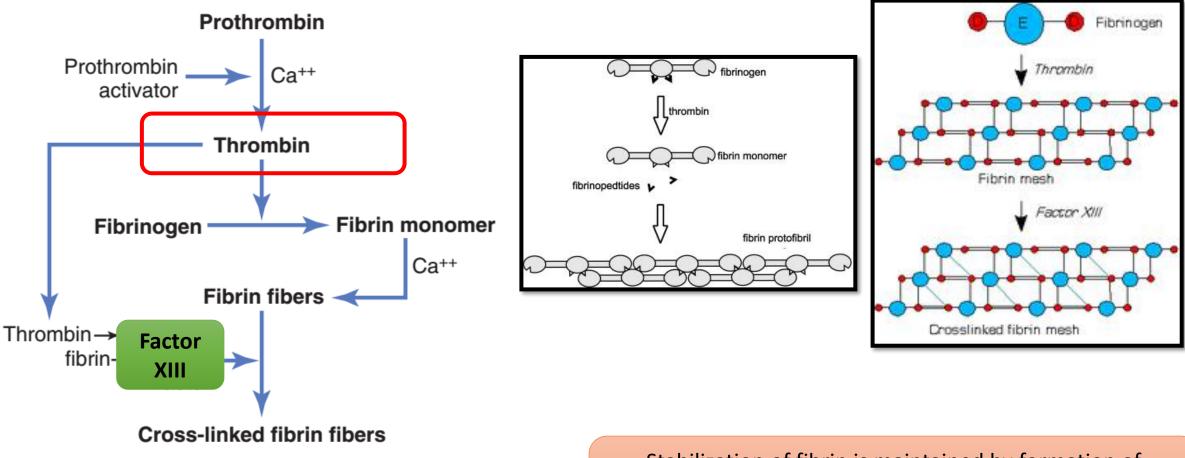

Extrinsic Pathway

- Begins with a traumatized vascular wall or traumatized extravascular tissues that come in contact with the blood.
- 1) Release of tissue factor
- 2) Activation of Factor X
- 3) Formation of Prothrombin activator



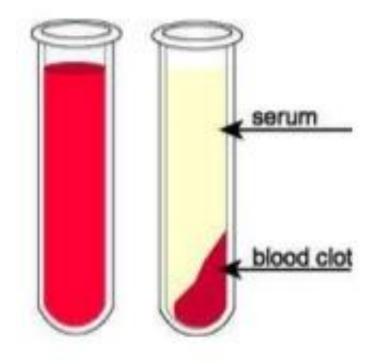
Intrinsic Pathway

- Begins with trauma to the blood or exposure of the blood to collagen from a traumatized blood vessel wall.
- Blood trauma or contact with collagen causes
 - 1) activation of Factor XII
 - 2) release of platelet phospholipids.


ii. Conversion of prothrombin to thrombin

Positive Feedback of Clot Formation

- Once a blood clot has started to develop, it normally extends within minutes into the surrounding blood
- The clot initiates a positive feedback to promote more clotting.
- the proteolytic action of thrombin: Activates many of the clotting factors and fibrinogen


iii. Conversion of fibrinogen to fibrin

Stabilization of fibrin is maintained by formation of covalent cross-bridges, which is catalyzed by Factor XIII and Calcium

Clot retraction

- Contraction of platelets trapped within the clot shrinks the fibrin meshwork pulling the edges of the damaged vessel closer together: Facilitation of wound healing
- Contractil proteins of the platelets
- Release of fibrin stabilizing factor (Factor XIII)
- Serum is squuezed from the clot

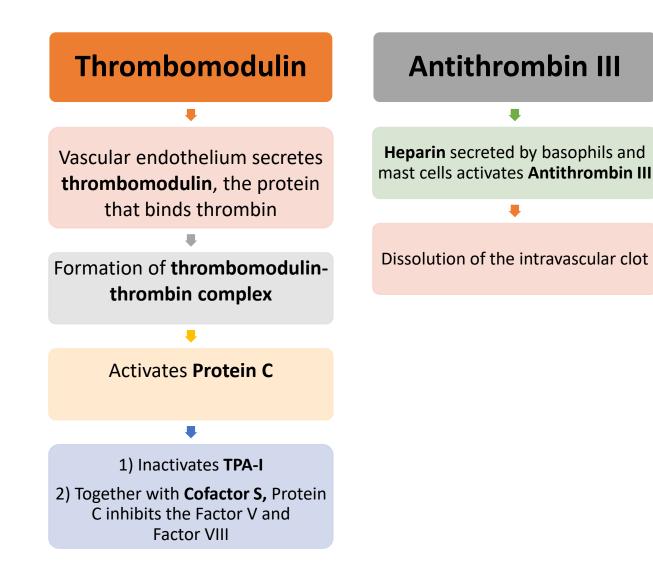
Formation of temporary platelet plug

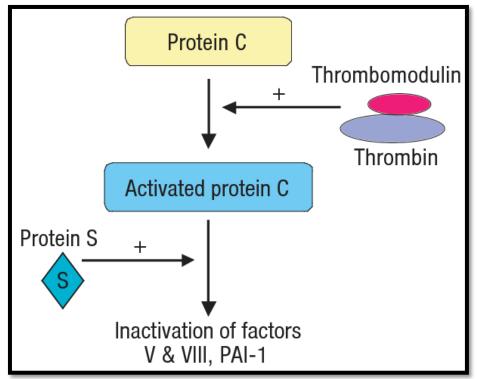
Activation of the coagulation cascade

Fibrinolysis

4) Fibrinolysis

- ✓ Dissolution of the clot
- ✓ Conversion of plasminogen to plasmin by lysosomal enzymes and Plasminogen Activators (endothelial cells / blood /kidney)
- Fibrin polymers \rightarrow Fibrin dimers
- ✓ Plasmin also degrades Factor Va, VIIIa, and GPIIb


Plasminogen activators:


- Adrenaline
- Urokinase
- Thrombomodulin-Thrombin complex
- Kallikrein
- t-PAs

Why blood does not clot in circulation?

- Endothelial surface
 - Smoothness
 - Layer of glycocalyx
- Velocity of circulation
- Natural anticoagulants
- Activation of fibrinolytic sytem
- Liver removes activated clotting factors

Natural anticoagulant mechanisms

Antrithrombin III, Plasminogen, Protein C and Protein S deficiencies or abnormalities causes to therombotic disorders.

Anticoagulants		Procoagulants	
Heparin (Natural)	Activates antithrombin III	Thrombin	
	Inactivates Factors IX, X, XI, and XII	Sodium and Calcium alginat	Activates Factor XII
Antithrombin or heparin cofactors (Natural)		Oxidized sellulose	Activates Factor XII
Protein C (Natural)			
Coumarin derivatives Dicumarol and Warfarin	Inhibitor of Vit K*		
EDTA	Sequester Ca2+		
Oxalate	Precipitate Ca2+		
Citrate	Converts Ca2+ to insoluble calcium citrate		
Cold, Smooth surfaces**, Silicon			

*Vit K is esential for the formation of Factor II, VIII, IX, X, protein C, and Protein S. Synthesized by the bacteria in the column ** Prevents activation of Factor XII.

Hemostatic Function Tests

• Bleeding time:

- The interval between the skin puncture and spontaneous, unassisted stoppage of bleeding.
- Duke's method
- Normal: **1-5 min**

• Clotting time:

- The interval between entry of blood into capillary tube and formation of fibrin threads
- Wright's capillary glass tube
- Normal: 3-6 min

• Prothrombin time:

• Normal: 15-20 sec