Convolution

Lecture 9

Dr. Görkem Saygilı

Department of Biomedical Engineering
Ankara University
Signals \& Systems, 2019-2020 Fall

Recap:

We have seen systems with:

- memory
- invertibility
- causality
- stability
- linearity
- time invariance
and properties of LTI Systems in the last lecture.
In this lecture, we will learn about convolution operation.

Convolution:

Definition: It is a mathematical way of combining two signals to form a third signal and commonly denoted with the operator $*$.

Convolution Theorem: It is one of the most important theorems for LTI systems. Convolution theorem states that the response of a system at zero initial conditions due to any input is the convolution of that input and the system's impulse response.

Impulse Response of a System

Impulse response of a system is the system's output when its input is an impulse.

Impulse Response:

Impulse response is usually denoted with $h[n]$ for discrete time systems (DTS) and $h(t)$ for continuous time systems (CTS).

The output of an LTI system to any input $x[n]$ for DTS and $x(t)$ for CTS can be found by taking the convolution of that input signal with the impulse response:

$$
\begin{aligned}
y[n] & =x[n] * h[n] \\
y(t) & =x(t) * h(t)
\end{aligned}
$$

Discrete Time Convolution:

Convolution of two discrete time (DT) signals, $x_{1}[n]$ and $x_{2}[n]$, is calculated as:

$$
x_{1}[n] * x_{2}[n]=\sum_{k=-\infty}^{\infty} x_{1}[k] x_{2}[n-k]
$$

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

Continuous Time Convolution:

Convolution of two continuous time (CT) signals, $x_{1}(t)$ and $x_{2}(t)$, is calculated as:

$$
x_{1}(t) * x_{2}(t)=\int_{-\infty}^{\infty} x_{1}(\tau) x_{2}(t-\tau) d \tau
$$

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

Commutative Property:

Commutative property states that the order in which two signal are convolved does not change the result of convolution.

$$
\begin{aligned}
x_{1}[n] * x_{2}[n] & =x_{2}[n] * x_{1}[n] \\
x_{1}(t) * x_{2}(t) & =x_{2}(t) * x_{1}(t)
\end{aligned}
$$

Associative Property:

The convolution operation satisfies associative property, which is:

$$
\begin{aligned}
\left\{x[n] * h_{1}[n]\right\} * h_{2}[n] & =x[n] *\left\{h_{1}[n] * h_{2}[n]\right\} \\
\left\{x(t) * h_{1}(t)\right\} * h_{2}(t) & =x(t) *\left\{h_{1}(t) * h_{2}(t)\right\}
\end{aligned}
$$

Remember cascaded LTI systems from the last lecture.

Distributive Property

The convolution operation satisfies the distributive property, which is:

$$
\begin{aligned}
x[n] *\left(h_{1}[n]+h_{2}[n]\right) & =x[n] * h_{1}[n]+x[n] * h_{2}[n] \\
x(t) *\left(h_{1}(t)+h_{2}(t)\right) & =x(t) * h_{1}(t)+x(t) * h_{2}(t)
\end{aligned}
$$

Remember parallel LTI systems from the last lecture.

Convolution with an Impulse:

If a signal is convolved with an impulse $(\delta[n])$, the result is the exact replica of the input:

$$
\begin{aligned}
& x[n] * \delta[n]=x[n] \\
& x(t) * \delta(t)=x(t)
\end{aligned}
$$

Convolution with a Time-Shifted Impulse:

If a signal is convolved with a time-shifted impulse $\left(\delta\left[n-n_{0}\right]\right)$, the result is time shifted version of the input with the same amount as the impulse:

$$
\begin{aligned}
x[n] * \delta\left[n-n_{0}\right] & =x\left[n-n_{0}\right] \\
x(t) * \delta(t-\tau) & =x(t-\tau)
\end{aligned}
$$

Convolution Example:

Let $\mathrm{x}[\mathrm{n}]$ and $\mathrm{h}[\mathrm{n}]$ be:

Hence:

$$
\begin{aligned}
& x[n]=2 \delta[n+1]-\delta[n]+\delta[n-1] \\
& h[n]=\delta[n+1]-\delta[n]
\end{aligned}
$$

Convolution Example Solution:

$$
\begin{aligned}
x[n] * h[n] & =x[n] *(\delta[n+1]-\delta[n]) \\
& =x[n] * \delta[n+1]-x[n] * \delta[n] \\
& =2 \delta[n+2]-\delta[n+1]+\delta[n]-2 \delta[n+1]+\delta[n]-\delta[n-1] \\
& =2 \delta[n+2]-3 \delta[n+1]+2 \delta[n]-\delta[n-1]
\end{aligned}
$$

Example Solution in Matlab

The code is:

$$
\begin{array}{ll}
1- & x=[2,-1,1] ; \\
2- & h=[1,-1] ; \\
3- & y=\operatorname{conv}(x, h) ; \\
4- & \operatorname{disp}(y)
\end{array}
$$

The output is:

```
>> conv_exp
    2 -3 lll
```


Example Solution Plot:

If we plot the output:

Convolution Example on Matrices:

Images are stored as matrices in environments like MATLAB.
2D and 3D convolutions are very common in image processing.

Here is an example:
https://upload.wikimedia.org/wikipedia/commons/4/4f/
3D_Convolution_Animation.gif

1D CT Convolution Example:

https://upload.wikimedia.org/wikipedia/commons/a/a8/ Splot1.gif

Summary:

In this lecture, we learned the following topics:

- Impulse response of an LTI system (Recap)
- DT and CT convolution
- Properties of convolution
- Convolution with Time-Shifted impulse
- Convolution in Matlab

Next Lecture

In the next lecture, we will solve examples for both DT and CT convolution.
Please read related chapters from Oppenheim's book before the next lecture.

