# Signals and Their Properties <br> Lecture 3 

Dr. Görkem Saygilı

Department of Biomedical Engineering
Ankara University
Signals \& Systems, 2018-2019 Fall

Continuous Time Signals:
Mathematical representation of continous time signal:

$$
x(t)=\underset{\substack{\text { Amplitude } \\=\\ \text { frequency }}}{A} \cos \left(\omega_{0} t+\phi\right)
$$



Properties of Continous Time Signals - Periodic:

- Periodic $\Rightarrow x(t)=x\left(t+T_{0}\right)$

Since $x(t)=A \cos \left(\omega_{0} t+\phi\right)$

$$
\begin{aligned}
x\left(t+T_{0}\right) & =A \cos \left(\omega_{0}\left(t+T_{0}\right)+\phi\right) \\
& =A \cos \left(\omega_{0} t+\omega_{0} T_{0}+\phi\right)
\end{aligned}
$$

$$
T_{0}=\frac{2 \pi}{\omega_{D}}
$$

Properties of Continous Time Signals - Time Shift vs Phase:
A time shift of a sinusoidal is equivalent to a phase change.

Time shift $\Leftrightarrow$ Phase Change

$$
A \cos \left(\omega_{0}\left(t+t_{0}\right)\right)=A \cos \left(\omega_{0} t+\omega_{0} t_{0}\right)
$$

A change in phase
$\Delta \phi$

## Phase Shift:



A phase shift is equivalent to moving the signal in time.

## Even:

A signal is said to be even if we flip it around the origin it looks exactly the same:

$$
\begin{equation*}
x(t)=x(-t) \tag{1}
\end{equation*}
$$

## Odd:

A signal is said to be even if we flip it around the origin it is exactly the same as the original signals negated version:

$$
\begin{equation*}
x(t)=-x(-t) \tag{2}
\end{equation*}
$$

## Cosine and Sine Functions

Since,

$$
\begin{equation*}
\cos (t)=\cos (-t) \tag{3}
\end{equation*}
$$

$\cos (t)$ is even.

Since,

$$
\begin{equation*}
\sin (t)=-\sin (-t) \tag{4}
\end{equation*}
$$

$\sin (t)$ is odd.

You can practice on different functions.

Sine from Cosine

If we apply a phase shift of $-\pi / 2$ :

$$
\begin{aligned}
& A \cos \left(\omega_{0} t-\frac{\pi}{2}\right)=A \sin \left(\omega_{0} t\right) \\
& A \cos \left(\omega_{0} t-\frac{\pi}{2}\right)=A \cos \left(\omega_{0}\left(t-\frac{T_{0}}{4}\right)\right)
\end{aligned}
$$

Discrete Time Sinusoidal Signal:

$$
x[n]=A \cos \left(\Omega_{0} n+\phi\right)
$$

Amplitude $\overline{\overline{\text { frequency }}} \overline{\text { phase }}$


## Properties of Discrete Time Sinusoidal:

In continous time: A time shift $\Longleftrightarrow$ phase change.

In discerete time: A time shift $\Rightarrow$ phase change.

In discrete time a phase change does not necessarily corresponds to a time shift.
$\cos [n]$ has even symmetry.
$\sin [n]$ has odd symmetry.

## Mathematical Representation:

$$
\begin{equation*}
A \cos \left(\Omega_{0}\left(n+n_{0}\right)\right)=A\left(\cos \left(\Omega_{0} n+\Omega_{0} n_{0}\right)\right. \tag{5}
\end{equation*}
$$

$\Omega_{0} n_{0}$ is the phase change, $\Delta \phi$.
What if we shift cosine by $\frac{\pi}{2}$ :

$$
\begin{align*}
& A \cos \left(\Omega_{0} n-\frac{\pi}{2}\right)=A \sin \left(\Omega_{0} n\right)  \tag{6}\\
& A \cos \left(\Omega_{0} n-\frac{\pi}{2}\right)=A \cos \left(\Omega_{0}\left(n-n_{0}\right)\right) \tag{7}
\end{align*}
$$

where $n_{0}$ is $\frac{T_{0}}{4}$

## Phase Change vs. Time Change:

Phase change $\stackrel{?}{\Rightarrow}$ time change:

It is not necessarily true.

$$
\begin{align*}
& \operatorname{Acos}\left(\Omega_{0}\left(n+n_{0}\right)\right) \stackrel{?}{=} A \cos \left(\Omega_{0} n+\phi\right)  \tag{8}\\
& \Omega_{0} n+\Omega_{0} n_{0}=\phi \tag{9}
\end{align*}
$$

Since $n_{0}$ must be an integer, this is not satisfied for every value of $\phi$.

The Issue of Periodicity

Are all discrete time sinusoidals periodic?
All continuous-time sinusoidals are periodic.

Discrite-time sinusoidals are not always periodic.

## Proof:

To have a periodic signal: $x[n]=x[n+N]$.

$$
\begin{equation*}
A \cos \left(\Omega_{0}(n+N)+\phi\right)=\operatorname{cost}\left(\Omega_{0} n+\Omega_{0} N+\phi\right) \tag{10}
\end{equation*}
$$

It is periodic if: $\Omega_{0} N=2 \pi m$
which means: $N=\frac{2 \pi m}{\Omega_{0}}$
Since $N$ should be an integer, this is not satisfied for all values of $\Omega_{0}$.

## Property of Discrete-Time Sinusoidals:

Let $x_{1}[n]$ and $x_{2}[n]$ be:

$$
\begin{align*}
& x_{1}[n]=A \cos \left(\Omega_{1} n+\phi\right)  \tag{11}\\
& x_{2}[n]=A \cos \left(\Omega_{2} n+\phi\right) \tag{12}
\end{align*}
$$

if $\Omega_{2}=\Omega_{1}+2 \pi$

$$
\begin{equation*}
x_{2}[n]=A \cos \left(\Omega_{1} n+2 \pi n+\phi\right) \tag{13}
\end{equation*}
$$

Since $n$ is always an integer:

$$
\begin{align*}
A \cos \left(\Omega_{1} n+2 \pi n+\phi\right) & =A \cos \left(\Omega_{1} n+\phi\right)  \tag{14}\\
x_{2}[n] & =x_{1}[n] \tag{15}
\end{align*}
$$

The Class of Real \& Complex Exponentials:

$$
x(t)=C e^{a t}
$$




Continuous-Time Complex Exponential
$x(t)=C e^{a t}$
$C$ and $a$ are complex numbers:

$$
\begin{align*}
C & =|C| e^{j \Theta}  \tag{16}\\
a & =r+j \omega_{0}  \tag{17}\\
x(t) & =|C| e^{j \Theta} e^{\left(r+j \omega_{0}\right) t}  \tag{18}\\
& =|C| e^{r t} e^{j\left(\omega_{0} t+\Theta\right)} \tag{19}
\end{align*}
$$

## Using Euler's Identity:

$$
e^{j \pi}=\cos (\pi)+j \sin (\pi)
$$

$$
\begin{align*}
& e^{j\left(\omega_{0} t+\Theta\right)}=\cos \left(\omega_{0} t+\Theta\right)+j \sin \left(\omega_{0} t+\Theta\right)  \tag{20}\\
& x(t)=|C| e^{r t} \cos \left(\omega_{0} t+\Theta\right)+j|C| e^{r t} \sin \left(\omega_{0} t+\Theta\right) \tag{21}
\end{align*}
$$



