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Abstract: Pharmaceutical research has successfully incorporated a wealth of molecular 

modeling methods, within a variety of drug discovery programs, to study complex biological 

and chemical systems. The integration of computational and experimental strategies has been 

of great value in the identification and development of novel promising compounds. Broadly 

used in modern drug design, molecular docking methods explore the ligand conformations 

adopted within the binding sites of macromolecular targets. This approach also estimates the 

ligand-receptor binding free energy by evaluating critical phenomena involved in the 

intermolecular recognition process. Today, as a variety of docking algorithms are available, 

an understanding of the advantages and limitations of each method is of fundamental 

importance in the development of effective strategies and the generation of relevant results. 

The purpose of this review is to examine current molecular docking strategies used in drug 

discovery and medicinal chemistry, exploring the advances in the field and the role played 

by the integration of structure- and ligand-based methods. 
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1. Introduction 

The research-based pharmaceutical industry has increasingly employed modern medicinal chemistry 

methods, including molecular modeling, as powerful tools for the study of structure-activity 

relationships (SAR) [1]. In addition to pharmacodynamics data (e.g., potency, affinity, efficacy, 

selectivity), pharmacokinetic properties (ADMET: absorption, distribution, metabolism, excretion and 

toxicity) have also been studied through the application of these methodologies [2]. The field has 

progressed hand-in-hand with advances in biomolecular spectroscopic methods such as X-ray 

crystallography and nuclear magnetic resonance (NMR), which have enabled striking progress in 

molecular and structural biology. These techniques have allowed the resolution of more than 100,000 

three-dimensional protein structures, providing vital structural information about key macromolecular 

drug targets [3]. Efforts in storing, organizing and exploring such information have generated a growing 

demand for robust and sophisticated computational tools. Based on this perspective, the accurate 

integration of in silico and experimental methods has provided the up-to-date understanding of the intricate 

aspects of intermolecular recognition [4]. 

Within this framework, structure-based drug design (SBDD) methods (i.e., the use of three-dimensional 

structural information gathered from biological targets) are a prominent component of modern medicinal 

chemistry [5]. Molecular docking, structure-based virtual screening (SBVS) and molecular dynamics 

(MD) are among the most frequently used SBDD strategies due to their wide range of applications in 

the analysis of molecular recognition events such as binding energetics, molecular interactions and 

induced conformational changes [6]. A distinct approach in drug design comprises the use of bioactive 

small-molecule libraries. The unique chemical diversity available in these libraries represents the  

space occupied by ligands known to interact with a specific target. This type of information is used in 

ligand-based drug design (LBDD) methods [7]. Ligand-based virtual screening (LBVS), similarity 

searching, QSAR modeling and pharmacophore generation are some of the most useful LBDD methods [8]. 

SBDD and LBDD approaches have been applied as valuable drug discovery tools both in academia 

and industry [9], owing to their versatility and synergistic character. The integration of these approaches 

has been successfully employed in a number of investigations of structural, chemical and biological  

data [10,11]. 

2. Structure-Based Drug Design (SBDD) 

Understanding the principles by which small-molecule ligands recognize and interact with 

macromolecules is of great importance in pharmaceutical research and development (R & D) [12]. 

SBDD refers to the systematic use of structural data (e.g., macromolecular targets, also called receptors), 

which are usually obtained experimentally or through computational homology modeling [13]. The purpose 

is to conceive ligands with specific electrostatic and stereochemical attributes to achieve high receptor 

binding affinity. The availability of three-dimensional macromolecular structures enables a diligent 

inspection of the binding site topology, including the presence of clefts, cavities and sub-pockets. 

Electrostatic properties, such as charge distribution, can also be carefully examined. Current SBDD 

methods allow for the design of ligands containing the necessary features for efficient modulation of  

the target receptor [12,13]. Selective modulation of a validated drug target by high affinity ligands 
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interferes with specific cellular processes, ultimately leading to the desired pharmacological and 

therapeutic effects [14]. 

SBDD is a cyclic process consisting of stepwise knowledge acquisition (Figure 1). Starting from a 

known target structure, in silico studies are conducted to identify potential ligands. These molecular 

modeling procedures are followed by the synthesis of the most promising compounds [15]. Next, 

evaluations of biological properties, such as potency, affinity and efficacy, are carried out using diverse 

experimental platforms [16]. Provided that active compounds are identified, the three-dimensional 

structure of the ligand-receptor complex can be solved. The available structure allows the observation 

of several intermolecular features supporting the process of molecular recognition. Structural descriptions 

of ligand-receptor complexes are useful for the investigation of binding conformations, characterization 

of key intermolecular interactions, characterization of unknown binding sites, mechanistic studies and 

the elucidation of ligand-induced conformational changes [17]. 

 

Figure 1. Outline of SBDD. The three-dimensional structure of the molecular target is 

employed in molecular modeling studies. Promising compounds are synthesized and then 

experimentally evaluated. Given that bioactive small-molecules are discovered, the structure 

of a ligand-receptor complex can be obtained. The binding complex is used in molecular 

modeling studies and novel compounds are designed. 

Once a ligand-receptor complex has been determined, biological activity data are correlated to the 

structural information [18]. In this way, the SBDD process starts over with new steps to incorporate 

molecular modifications with the potential to increase the affinity of new ligands for the binding site. 

The flexibility of the target receptor is an essential aspect that must be considered throughout the modeling 

phase, bearing in mind that substantial conformational change can occur upon ligand binding. The use 

of techniques such as flexible docking and MD are useful in addressing the flexibility issue [19,20]. 

3. Molecular Docking 

Molecular docking is one of the most frequently used methods in SBDD because of its ability to 

predict, with a substantial degree of accuracy, the conformation of small-molecule ligands within the 
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appropriate target binding site (Figure 2) [21]. Following the development of the first algorithms in the 

1980s, molecular docking became an essential tool in drug discovery [22]. For example, investigations 

involving crucial molecular events, including ligand binding modes and the corresponding intermolecular 

interactions that stabilize the ligand-receptor complex, can be conveniently performed [23]. Furthermore, 

molecular docking algorithms execute quantitative predictions of binding energetics, providing rankings 

of docked compounds based on the binding affinity of ligand-receptor complexes [22,23]. 

 

Figure 2. Outline of the molecular docking process. (A) Three-dimensional structure of the 

ligand; (B) Three-dimensional structure of the receptor; (C) The ligand is docked into the 

binding cavity of the receptor and the putative conformations are explored; (D) The most 

likely binding conformation and the corresponding intermolecular interactions are identified. 

The protein backbone is represented as a cartoon. The ligand (carbon in magenta) and active 

site residues (carbon in blue) are shown in stick representation. Water is shown as a white 

sphere and hydrogen bonds are indicated as dashed lines. 

The identification of the most likely binding conformations requires two steps: (i) exploration of a 

large conformational space representing various potential binding modes; (ii) accurate prediction of the 

interaction energy associated with each of the predicted binding conformations [24]. Molecular docking 

programs perform these tasks through a cyclical process, in which the ligand conformation is evaluated 

by specific scoring functions. This process is carried out recursively until converging to a solution of 

minimum energy [23–25]. 

3.1. Conformational Search 

In the conformational search stage, structural parameters of the ligands, such as torsional (dihedral), 

translational and rotational degrees of freedom, are incrementally modified (Figure 3A). Conformational 

search algorithms perform this task by applying systematic and stochastic search methods [25,26]. 

Systematic search methods promote slight variations in the structural parameters, gradually changing 

the conformation of the ligands [27]. The algorithm probes the energy landscape of the conformational 

space and, after numerous search and evaluation cycles, converges to the minimum energy solution 

corresponding to the most likely binding mode (Figure 3B). Although the method is effective in 
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exploring the conformational space, it can converge to a local minimum rather than the global minimum. 

This drawback can be overcome by performing simultaneous searches starting from different points of 

the energy landscape (i.e., distinct conformations) [28]. 

Stochastic methods carry out the conformational search by randomly modifying the structural 

parameters of the ligands [29]. For this, the algorithm generates ensembles of molecular conformations 

and populates a wide range of the energy landscape (Figure 3C). This strategy avoids trapping the final 

solution at a local energy minimum and increases the probability of finding a global minimum. As the 

algorithm promotes a broad coverage of the energy landscape, the computational cost associated with 

this procedure is an important limitation [28,29]. 

 

Figure 3. Small-molecule conformational search methods. (A) A molecule containing two 

bulky groups (green and purple spheres) has its conformation defined by two internal 

dihedrals Φ1 and Φ2; (B) Considering Φ2 as a frozen dihedral, the energy variation due to 

rotation of Φ1 is plotted in a 1D energy landscape. The initial structure (grey spheres) is 

modified by changing Φ1, leading to a decrease in energy. The systematic search algorithm 

changes all structural parameters until a local (blue spheres) or global (red sphere) energy 

minimum is reached; (C) The stochastic search explores the conformational space by 

randomly generating distinct conformations, populating a broad range of the energy landscape. 

This procedure increases the probability of finding a global energy minimum. 

Systematic and stochastic methods are included in widely used molecular docking programs, which 

have specific approaches to address their respective problems [27]. For instance, systematic search 

methods explore all combinations of the structural parameters. The number of possible combinations 

grows exponentially as the degrees of freedom associated with the ligand increase, resulting in a 

phenomenon known as combinatorial explosion. Docking programs such as FRED, Surflex and DOCK 

solve this problem by applying an incremental construction algorithm in which the ligand is gradually 
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built in the binding site (Figure 4) [30–32]. In this strategy, the chemical structure is initially broken into 

several fragments (Figure 4A). Next, one of these parts is selected as an anchor fragment and is docked 

in a complementary region of the binding site (Figure 4B) while the remaining fragments are sequentially 

added (Figure 4C–E). The process continues until the entire ligand has been constructed. The algorithm 

performs the conformational search only for the fragments being added, reducing the degrees of freedom 

to be explored, and thereby avoiding combinatorial explosion [33]. 

 

Figure 4. The incremental construction method. (A) The ligand (stick representation, carbon 

in cyan) is broken into several fragments; (B) The anchor fragment is docked in the binding 

site of the molecular target (cartoon representation, carbon in salmon); (C) The next fragment 

is docked after the anchor fragment; (D and E) The other fragments are docked sequentially 

to construct the entire ligand in its binding conformation. Residues in the active site are shown 

in stick representation (carbon in salmon). Hydrogen bonds are indicated as dashed lines. 

Genetic algorithms (GA) are an interesting application of the stochastic search, which have been 

successfully used in molecular docking programs such as AutoDock and Gold [34,35]. The GA 

algorithm addresses the high computational cost associated with stochastic methods by applying 

concepts of the theory of evolution and natural selection. As a first step, the algorithm encodes all of the 

structural parameters of the initial structure in a chromosome, which is represented by a vector. Starting 

from this chromosome, the random search algorithm generates an initial population of chromosomes 

covering a wide area of the energy landscape. This population is evaluated and the most adapted 

chromosomes (i.e., those with the lowest energy values) are selected as templates for the generation of 

the next population. This procedure decreases the average energy of the chromosome ensemble by 

transmitting favorable structural characteristics from one population to another, reducing therefore, the 

conformational space to be explored. The GA routine is recursively executed and, after a reasonable 

number of conformational search-and-evaluation cycles, converges to a conformation (chromosome) 

corresponding to the global energy minimum [36]. 
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Regardless the specifics of each method, any conformational search algorithm should be able to 

explore a wide range of the energy landscape in a reasonable amount of time. Ideally, the evaluation of 

a modest set of molecules needs to be concluded in a few minutes. A list of widely used molecular docking 

algorithms categorized according to the conformational search methodology is provided in Table 1. 

Table 1. Examples of conformational search algorithms. 

Systematic Search Random/Stochastic Search 

eHiTS [28] AutoDock [34] 
FRED [30] Gold [35] 

Surflex-Dock [31] PRO_LEADS [44] 
DOCK [32] EADock [45] 
GLIDE [37] ICM [46] 
EUDOC [38] LigandFit [47] 
FlexX [39] Molegro Virtual Docker [48] 

Hammerhead [40] CDocker [49] 
Flog [41] GlamDock [50] 

SLIDE [42] PLANTS [51] 
ADAM [43] MolDock [52] 

 MOE_Dock [53] 

3.2. Evaluation of Binding Energetics 

Molecular docking programs use scoring functions to estimate the binding energetics of the predicted 

ligand-receptor complexes. The energy variation, due to the formation of the ligand-receptor structure, 

is given by the binding constant (Kd) and the Gibbs free energy (ΔGL) [54]. Prediction of the binding 

energy is performed by evaluating the most important physical-chemical phenomena involved in  

ligand-receptor binding, including intermolecular interactions, desolvation and entropic effects [55]. 

Therefore, the greater the number of physical-chemical parameters evaluated, the greater the accuracy 

of the scoring function. However, the computational cost increases in proportion to the number of 

variables included in the function, a shortcoming that reduces the productivity of the docking algorithm. 

Ideally, efficient scoring functions should offer a balance between accuracy and speed, which is a critical 

aspect when working with large ligand sets. 

Scoring functions are categorized in the three following groups: force-field-based, empirical, and 

knowledge-based functions [56]. Force-field-based scoring functions estimate the binding energy by 

summing the contributions of bonded (bond stretching, angle bending, and dihedral variation) and  

non-bonded terms (electrostatic and van der Waals interactions) in a general master function. This type 

of scoring function applies an ab initio method to calculate the energy associated with each term of  

the function using the equations of classical mechanics [57]. A major limitation of force-field-based 

methods is their inaccuracy in estimating entropic contributions. This shortcoming is due to the lack of 

a reasonable physical model to describe this phenomenon. Furthermore, the solvent is not explicitly 

considered, hindering the estimation of desolvation energies [58]. 

Empirical scoring functions are another type of evaluation method. Each term of the function describes 

one type of physical event involved in the formation of the ligand-receptor complex. These include 

hydrogen-bonding, ionic and apolar interactions, as well as desolvation and entropic effects [59]. As a 
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first step in the development of an empirical function, a series of protein-ligand complexes with known 

binding affinities is used as a training set to perform a multiple linear regression analysis. Then, the 

weight constants generated by the statistical model are used as coefficients that adjust the terms of the 

equation. A drawback of empirical scoring functions is their dependence on the accuracy of the data 

used to develop the model [60]. However, because of the simplicity of the employed energy terms, 

empirical functions are faster than force-field-based methods. Surflex and FlexX are broadly used 

molecular docking programs using empirical scoring functions [31,39]. 

A third approach used to evaluate ligand-receptor binding energy is the knowledge-based scoring 

functions. The method uses pairwise energy potentials extracted from known ligand-receptor complexes 

to obtain a general function [61]. These potentials are constructed by taking into account the frequency 

with which two different atoms are found within a given distance in the structural dataset. The different 

types of interactions observed in the dataset are classified and weighted according to their frequency of 

occurrence. The final score is given as a sum of these individual interactions. As knowledge-based 

functions do not rely on reproducing binding affinities (empirical methods) or ab initio calculations 

(force-field methods), they offer a suitable balance between accuracy and speed [62]. 

Every scoring function has its virtues and limitations. Therefore, the simultaneous use of different 

scoring methodologies has been increasingly employed as a way to obtain a consensus scoring [63].  

This can be very useful, as it combines the advantages and simultaneously attenuates the shortcomings 

of each method [64]. Examples of consensus scoring functions are MultiScore, X-Cscore, GFscore, SCS, 

SeleX-CS and CONSENSUS-DOCK [65–70]. Table 2 provides a list of several scoring functions 

implemented in the most frequently used molecular docking programs. 

Most docking programs are able to successfully predict the conformation of the ligand within the 

target binding site, as can be confirmed by comparison of predicted complexes with their corresponding 

crystallographic data. However, most programs do not reproduce the absolute interaction energy of the 

ligand-receptor complex with satisfactory agreement. Issues such as desolvation and entropic effects are 

examples of the challenges to be overcome by the current docking algorithms [71,72]. 

Table 2. Examples of scoring functions implemented in widely used molecular docking programs. 

Force-Field-Based Empirical Knowledge-Based 

DOCK [32] AutoDock [34] SMoG [82] 
AutoDock [34] GlideScore [37] DrugScore [62] 
GoldScore [35] ChemScore [60] PMF_Score [83] 

ICM [46] X_Score [66] MotifScore [84] 
LigandFit [47] F_Score [73] RF_Score [85] 

Molegro Virtual Docker [48] Fresno [75] PESD_SVM [86] 
SYBYL_G-Score [73] SCORE [76] PoseScore [87] 
SYBYL_D-Score [73] LUDI [77]  

MedusaScore [74] SFCscore [78]  
 HYDE [79]  
 LigScore [80]  
 PLP [81]  
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3.3. Covalent Bonds in Molecular Docking 

Covalent drugs have demonstrated to be opportune alternatives in several therapeutic areas such as 

cancer, diabetes, and infectious, cardio-vascular, gastro-intestinal and neurologic diseases. Recent reports 

have claimed that approximately one-third of the currently marketed enzyme modulators are covalent 

inhibitors [88]. Covalent ligands act by irreversibly inactivating their targets; consequently, recovery of 

the inhibited biological function involves re-synthesis of the targeted protein. Usually, covalent 

inhibitors bind to their molecular targets with high affinity, leading to a long-lasting pharmacological 

response, and consequently requiring less frequent administration [89]. Well-known drawbacks of 

covalent drugs such as toxicity, lack of specificity and high reactivity, have led most R & D programs 

to avoid such compounds [90]. This conception has been reconsidered and an increased interest in 

covalent inhibitors has been reported recently. As a result, diverse strategies have been developed to 

approach the binding of covalent small-molecule inhibitors. Covalent docking algorithms are aimed to 

explore the energy landscape available to the ligand when it is covalently linked to the receptor, as well 

as evaluate the binding energetics of the interaction [91]. Despite the recent resurgence of covalent drugs, 

molecular modeling methods devised to address the problem of covalent docking are not as developed 

as those dedicated to noncovalent docking [92]. 

Binding of covalent drugs has some differences from noncovalent molecular interaction, especially 

with respect to binding thermodynamics. Current molecular mechanics (MM) algorithms are able to 

predict with good accuracy noncovalent binding events. However, the formation of covalent bonds is 

not satisfactorily approached by these methods [93]. The issue of covalent-bond formation can be 

appropriately handled by quantum mechanical methods (QM), which are able to explore the whole 

reaction mechanism [92]. 

The problem of modeling covalent bonds in molecular docking has been targeted by widely used 

molecular docking programs such as DOCK [32], AutoDock [34] and Gold [35]. Each of these programs 

employs a particular approach to manage covalent docking. Gold, for instance, attempts to mimic the 

covalent bond formation by defining an atom in both the ligand and the receptor to play the role of “link 

atoms” [94]. Subsequently, the ligand link atom is overlaid on the protein link atom and the geometry of 

the covalent bond is evaluated by specific terms of the scoring function (clash, torsion and valence-angle 

bending terms). Another program—DOCKovalent—is an adaptation of DOCK3.6 aimed to perform 

large-scale, covalent virtual screening [95]. The algorithm defines a priori a covalent attachment point 

and systematically explores the ligand conformational space around the modeled covalent bond. Each 

conformation is ranked with the default scoring function implemented in DOCK3.6. Another approach 

is a recent adaptation of AutoDock4, which proposes the so-called two-point attractor method for 

covalent docking [96]. The default AutoDock routine consists of  the calculation of an interaction energy 

map, constructed by using several probe atoms; and a subsequent conformational search that uses these 

maps as reference tables to evaluate the binding energetics. The two-point attractor approach works as 

follows: first, the two terminal atoms of the residue covalently bound to the ligand are removed. Next, 

this fragment is attached to the correct atom of the ligand, and labeled with two specific atoms types (A 

and B). Then, a Gaussian function is employed to generate modified interaction maps for these atoms, 

centered on their original location in the covalently bound amino acid residue. These interaction energy 

maps penalize ligand conformations in which A or B are not properly placed in their original positions. 


