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ABSTRACT: This paper describes a similarity-driven simple
evolutionary approach to producing candidate molecules of
new drugs. The aim of the method is to explore the candidates
that are structurally similar to the reference molecule and yet
somewhat different in not only peripheral chains but also their
scaffolds. The method employs a known active molecule of our
interest as a reference molecule which is used to navigate a
huge chemical space. The reference molecule is also used to
obtain seed fragments. An initial set of individual structures is
prepared with the seed fragments and additional fragments
using several connection rules. The fragment library is
preferably prepared from a collection of known molecules related to the target of the reference molecule. Every fragment of
the library can be used for fragment-based mutation. All the fragments are categorized into three classes; rings, linkers, and side
chains. New individuals are produced by the crossover and the fragment-based mutation with the fragment library. Computer
experiments with our own fragment library prepared from GPCR SARfari verified the feasibility of our approach to drug
discovery.

■ INTRODUCTION

In the drug discovery process, various characteristics, including
biological activities and ADMET properties, must be
considered simultaneously. Medicinal chemists synthesize
congeneric series of compounds to clarify the structure−
activity relationship (SAR) of their own hits or lead series, and
they use the SAR knowledge to optimize the compounds in
further synthesis. In addition, drug discovery entails compli-
cated tasks of optimization with respect to ADMET properties.
Medicinal chemists are often required to change scaffolds
further by so-called core hopping to address scaffold-dependent
issues.1−3 One of the good examples is GSK’s B-Raf inhibitor
program.4,5 They changed the molecular frameworks (scaf-
folds) during both of lead generation and lead optimization
stages to discover a compound for clinical trial.
Together with medicinal chemistry, computational chemistry

plays an important part in the discovery of new drugs.
Computational molecular design has been an active research
area over the past decades. Many computerized structural
design approaches have been developed, which utilize protein-
structures and/or ligand-structures.6−27 For example,
LEGEND,6 LUDI,7 SPROUT,8 LEA3D,9 LigBuilder,10,11 and
SYNOPSIS12 use protein structures; whereas TOPAS,13

CoG,14 and Flux15,16 use the structures of known ligands.
The former methods are referred to as the structure-base design
and the latter methods to as the ligand-based design,

respectively. The general advantage of ligand-based approaches
is their wide range of applicability, because those approaches
can be used in the case of that the three-dimensional (3D)
structure of the target is not available.
Evolutionary algorithms are actively used for the compu-

terized molecular design. They are based on concepts derived
from biological evolution, including reproduction, mutation,
crossover, and selection. The algorithms are widely used to
solve various drug discovery problems, such as parameter
optimization of QSAR/QSPR models28 and 3D-ligand align-
ment29 as well as the compound design described above. New
molecules are designed by repeatedly applying the evolutionary
operations to existing molecules. Among these operations,
mutation and crossover are vital for generating new chemical
structures. Mutation methods are roughly classified into the
fragment-based mutation and the atom-based mutation. In our
previous study, the atom-based method was used for the
mutation, in which an atom is modified into another atom to
explore the chemical space. The method often resulted in a lot
of unfavorable structures that contained invalid hetero−hetero
atom bonds such as O−O and N−F.20 One of the approaches
to avoiding this problem is to use exclusion rules of the
substructures reported by Huang et al.18 An alternative method
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is to use a fragment-based mutation instead of the atom-based
mutation. We also considered that the use of fragments is a
good way to generate chemically feasible structures when those
fragments are derived from known molecules.
Evolutionary algorithms use fitness score to select the

surviving structures. For example, Molecule Evoluator17 uses
medicinal chemists’ knowledge and Flux uses a similarity index
(Tanimoto coefficient or Euclidean distance) as the fitness
function. In addition, building structures with chemical
feasibility is an important point for de novo design. Frag-
ment-based approaches were favorably used for the purpose.
For example, NovoFLAP19 uses fragments with thirty-two
chemical transformation operators to generate structures
obeying valence rules. Flux builds molecules by a RECAP-
based rule (11 reaction schemes) to connecting fragments.
These approaches are reasonable to generate feasible structures.
However, we considered that a more simplified approach with
fewer connection rules has an advantage in use.
In this paper, we propose a similarity-driven fragment-based

evolutionary approach to producing drug-like molecules for
drug discovery. Aim of the method is to explore the candidates
that are similar to a reference molecule and yet somewhat
different in not only the side chains but also their scaffolds.
Chemical feasibility of the candidates is also considered.

■ METHODS

Outline of Evolutionary Algorithm. The basic idea of the
present method is a similarity-driven simple evolutionary
approach (Figure 1). The method employs an existing active
molecule of our interest. It is used as a reference molecule to
navigate a chemical space to be explored. The reference
molecule is also used to obtain seed fragments for making the
initial population. The initial set of individual structures is

prepared using the seed fragments and additional fragments
from a fragment library. The procedure of the present
evolutionary approach is summarized as follows:

(1) Input a reference structure.
(2) Generate seed fragments.
(3) Make an initial set of individual structures.
(4) Generate offsprings for the next generation by mutation

and crossover.
(5) Evaluate fitness of the structures and select some of them

to survive.
(6) Steps 4 and 5 are repeated until that the alternation of

generation reaches to the specified number.

In the following, we will use the term “fragment” to mean a
building block. In our approach, a molecule can be built by
connecting the fragments at their connection points specified in
advance. The connection points of a fragment are identified
from the original molecule as shown in Figure 2.

Seed Fragments. In the present work, the seed fragments
are automatically prepared by fragmentation of the reference
molecule. Then, they are employed for making the initial
structures with additional fragments that were randomly
selected from a fragment library (Figure 2). The detail of
making a structure is described in a later section (Making
Structure and Fragment Connection Rules).

Preparation of Fragment Library. In this work, we
prepared our own fragment library. Every fragment of the
library is preferably obtained from a collection of known
compounds that are related to the target of interest. Three
different types of fragments (ring, linker, and side-chain) were
defined as building blocks and used to make a molecule.
Walters et al. reported that 70% of the compounds in the

Journal of Medicinal Chemistry are composed of a relatively
small number of building blocks (e.g., only 37 rings, 53 linkers,
and 16 side-chains).30 Thus, we thought that a wide variety of
new molecular frameworks could be designed by the
combination of the building blocks such kind.
For making a molecule from the fragments, we explicitly

treated their possible connection points by labeling with
dummy atoms. For example, ortho-substituted benzene and
para-substituted benzene are treated as different fragments (see
ring fragments in Figure 3). Every type of monocyclic rings,
fused rings, or spiro rings is defined as ring fragments. It should
be noted that biphenyl is not a ring fragment but a combinationFigure 1. General scheme of the molecular evolutionary algorithm.

Figure 2. Example of generation of seed fragments and making a initial
structure. A connectable point is indicated by an asterisk.
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of two ring fragments because two phenyl rings do not share
any atom. A chain or an atom between rings is defined as a
linker fragment, which has two or more attachment points.
Every acyclic fragment with a single connection point is defined
as a side-chain fragment.
In this work, Bioactive molecules in GPCR SARfari 2.031 of

ChEMBL32 (141 990 molecules, 947 914 assays) were used to
prepare the fragment library. First, compounds with biological
activities indicated by IC50, Ki, Kd, log IC50, log Ki, log Kd,
pIC50, pKi, or pKd values were retrieved. The subsequent
removal of large molecules (heavy atoms ≥50), duplicated
molecules, and metal-containing molecules such as ferrocenes
yielded 97 084 unique molecules with 313 980 assays. Then,
fragments were extracted from the molecules and duplicated
fragments were removed by comparing canonical SMILES
generated by OpenBabel.33 Again, phenyl rings with one, two,
or three connection points in different configurations are
treated as different fragments, respectively. Frequent fragments
with molecular weights ≤300 were extracted, and finally, 1527
rings, 605 linkers, and 471 side-chains were prepared as a

fragment library. Even in a simple estimation, the number of
possible structures that consist of one ring, one linker, and one
side-chain exceeded 108. When discriminating with respect to
connection points and using multiple rings, multiple linkers,
and multiple side-chains, a very large number of structures can
be generated by using the present fragment library.

Making Structure and Fragment Connection Rules.
Individual structures of each population are produced from the
fragments according to several connection rules. We defined
three allowable connections. They are ring−ring connection,
ring−linker connection, and ring−side chain connection. On
the other hand, three unallowable connections were defined.
They are linker−linker connection, side chain−side chain
connection, and linker−side chain connection. Figure 4
illustrates the connection rules employed in this work.
For making a molecule, two fragments can be connected

according to the rules only if they have the same bond
multiplicity at both of the connection points. If there are other
connection points that are free for the connection, then implicit
hydrogen atoms are attached to all the connection points to
complete the structure.

Mutation. Mutation is a key operation for generating
individuals for the next generation. In mutation, a parent
molecule is randomly selected from existing molecules, and one
of the following operations is then applied against the parent
molecule.

• add a fragment
• remove a fragment
• replace a fragment

In the operation add a fragment, a base fragment was
randomly chosen from fragments that constituted the parent
molecule. Then, a new fragment to be introduced was selected
from the fragment library. If the base fragment type is ring, then
a new ring, linker, or side-chain fragment is selected from the
library and linked with a single or a double bond that obeying
valence at the attachment point (Figure 5a). If the base
fragment is a linker or a side-chain, then a ring fragment was
selected and added to the base fragment. In the case of remove a
f ragment, a terminal fragment was randomly removed from the
parent molecule (Figure 5b). In replace a f ragment, a base
fragment was randomly selected and then replaced with a new
fragment selected from the fragment library. To achieve this
operation, the fragment types and bond orders at the
attachment point must be consistent (Figure 5c).

Figure 3. Preparation of fragment library. An example of
fragmentation to obtain the fragments from a chemical structure. A
connection point is described with a dummy atom (labeled by an
asterisk).

Figure 4. Fragment connection rules for generating molecules with chemical validity. Allowd connections (a−c) and prohibited connections (d−f).
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Crossover. The crossover operation generates new two
child molecules by exchanging a fragment set derived from a
parent molecule with the other fragment sets derived from
another parent molecule. Two parent molecules were randomly
selected, and a crossover point was then randomly selected
from each parent molecule to define a set of fragments to be
crossed over. To achieve crossover, both the fragment type and
bond order at the two crossover points must be the same
(Figure 5d).
Fitness Evaluation. Our aim of the current work is to

explore the candidate structures that are similar to a reference
molecule and yet somewhat different in the scaffolds. For that
reason, the Tanimoto coefficient was used as a fitness function
to evaluate the molecular similarity to the reference molecule.
Surviving compounds were then selected in accordance with
the fitness scores (details are to be described in the Selection
subsection). These evolutionary processes were repeated for
the number of generations specified in advance to yield the
designed structures as an output.
In this study, a particular descriptor (referred to as

topological-fragment-descriptor; TFD) was employed to profile
chemical structures. The TFD was calculated in a manner
similar to that of topological-fragment-spectra method.34,35 For
the first, we enumerated all possible structural fragments that
have the specified number (six atoms in this work) or less
connected atoms excepting hydrogen atoms. Each fragment was
characterized by its constituent atoms based on atomic type,
hybridization, and whether the atom contained at least one
(aromatic or aliphatic) ring. Then, each characterized fragment
was hashed into a single integer. The occurrence of individual
fragments with the same characteristic value was then counted
to generate a numerical vector. Every chemical structure was
described as a multidimensional numerical pattern vector by
means of the TFD method.

Selection. Population of the next generation (new parent
molecules) was selected from both the parent and the offspring.
A tournament method was used to determine the surviving
individuals. First, two individuals were exclusively chosen from
the population of parent and offspring in a random manner.
Then, the individual with the higher fitness value was selected,
and another individual was discarded. This process was applied
to all of the molecules, and finally, half of the population was
selected as surviving individuals.

Molecular Evolution Experiment. Computer experiments
for exploring GPCR ligands were carried out to verify the
feasibility of the present approach. The fragment library for
mutation was prepared using the fragments obtained from
GPCR SARfari. We carried out molecular evolution experi-
ments for different targets (hAA2A and r5HT1A) from GPCR-
SARfari database. They are among largest classes in terms of
the number of the compound entries. The reference structures
for each target were randomly chosen from its own class of
compounds in the database. The number of structures to be
generated in each generation was set to 100. This means that in
every generation, 100 offspring molecules were generated from
100 parent molecules. Among the 200 molecules, 100
molecules were selected as surviving molecules. With respect
to the operators, a mutation rate of 0.8 and crossover rate of 0.2
were used for the evolution parameters. This means that each
individual member of the parent population produces an
offspring with a mutation rate of 80% and a crossover rate of
20%. The number of generations to be evolved was set to 500,
and the individuals that survived in the final generation were
referred as the “designed molecules”. The values of the
evolutionary parameters were determined based on our
preliminary study. The result showed that higher fitness was
obtained when mutation rate was set between 0.7 and 0.8. With
respect to the number of generations, the fitness reached its
plateau within 500 generations. Every computer experiment
was repeated 10 times for each reference structure.

■ RESULT AND DISCUSSION
Change of the Mean Fitness. First, a computational trial

of the molecular evolution was carried out to explore the

candidate structures for hAA2A with a reference molecule 1. To
examine the performance of the current approach, the change
of the mean fitness was measured.
The mean fitness of each population was calculated for the

100 surviving molecules. As mentioned above, every experi-

Figure 5. Examples of molecular mutations (a−c) and a crossover
operation (d). Connection position is indicated by an asterisk.

Figure 6. Change of the mean fitness for reference molecule 1. The
red shows the total average of the ten trials. The blue line shows that
for the best molecule, and the green for the worst molecule.
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ment was repeated 10 times for each reference structure. Figure
6 shows the total average of them obtained from those trials.
The mean fitness favorably increased as the number of
generations increased, and the fitness reached its plateau within
500 generations. For example, fitness increased from initial

structures of 0.11 to the final molecules of 0.84 for the
reference molecule 1.
We tried another computational experiment to explore the

candidate structures for the other target, r5HT1A. The mean
fitness curve is similar to the above case was observed for the
reference molecule 2 (Figure 7). Fitness of the best molecules
and worst molecules are also plotted in Figures 6 and 7. The
fitness of the best molecules in each generation also increased
as the number of generations increased. These results suggest
that our evolutionary approach was successful for exploring the
candidate molecules in a huge chemical space. For the
computational trial, creating 500 generations of an evolutionary
experiment with one CPU core required approximately 75 min.

Ligand Design for hAA2A. Figure 8 shows part of the
results of the hAA2A ligand design, which were obtained by the
current evolutionary approach. We investigated the individual
scaffolds of the designed molecules in terms of chemical graph
(CG) expression for nonterminal vertex graph (NTG).36 An
NTG is defined as a graph that has no terminal vertex and no
isolated vertex. In the design experiment, 100 molecules with
11 NTG scaffolds including molecules 3−6 are designed using
the seed fragments derived from the reference molecule 1.
Among them, many molecules (44 molecules including 3 and

Figure 7. Change of the mean fitness for the reference molecule 2.
The red shows the total average of the ten trials. The blue line shows
that for the best molecule, and the green for the worst molecule.

Figure 8. Result of hAA2A ligand design. All of the designed molecules are taken from the 5th trial. The NTG (NTG/CG) of a molecule is specified
by bold atoms and bold bonds.
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4) shared the same NTG of reference 1, demonstrating the
evolutionary direction of the similarity-based approach. The
notable points of the design are the following: (1) NTG
scaffolds of the designed molecule 5 and a known hAA2A
ligand 7 are same. (2) NTG scaffolds of 5 and the reference
molecule 1 are different. The structural difference between 5
and 7 is only three methyl groups on the furan rings and the
amide linker. As mentioned, a new molecule with similar but
different scaffold could be successfully designed from simple
seed fragments. It should also be noted that molecules with
lower fitness are to be worthy of remark. For example, the
fitness of the molecule 5 is 0.73.
Ligand Design for r5HT1A. Figure 9 shows part of the

results of the r5HT1A ligand design. The designed molecules
for r5HT1A were compared with the active molecules of GPCR
SARfari as well. Some successful examples are shown in Figure
9. When 2 was used as a reference, molecule 8 was obtained as
one of the designed molecules. NTG scaffolds of 2 and 8 are
different from each other. Compound 9 was identified from
GPCR SARfari as a similar molecule of 8. The structural
difference between 8 and 9 was only a methoxy group of the
phenyl ring. Compound 10 was also designed from the
reference 2. Compound 11 was identified from the database
that has the same NTG of 10. Compound 13 was designed
from a reference of 12, and we were able to find 14 that
perfectly matched a molecule in the database. Compound 16

was designed from a reference of 15, and compound 17 that
shares same NTG was found as a known active molecule. These
design examples show the applicability of our proposed
method.

Chemical Feasibility of Designed Molecules. In Figure
8, molecules 2−5 are the designed molecules with the highest
fitness, the lowest fitness, and in-between molecules collected
from the fifth trial (run 5). The reference molecule used in this
case was 1. Chemical feasibility (or chemical validity) of the
designed molecules was examined because the candidate
structures should not include unfavorable structures such as
invalid heterohetero atom bonds that often appeared in our
previous work. In this work, we introduced a fragment library
for the mutation operation to avoid the problem. The
connection rules for the fragments defined in the present
method may also play an important role to improve the
performance. The designed molecules are highly similar to the
reference molecule. The matter is obvious from the visual
inspection of Figure 8 as well. In particular, the scaffolds of
compounds 3 and 4 (shown by bold atoms and bold bonds) are
the same as the scaffold of the reference molecule.

Scaffold Variation of Designed Molecules. We
investigated scaffold variation of the designed molecules
obtained from the molecular evolution experiment. Again, the
chemical graph (CG) representation of the nonterminal vertex
graph (NTG) was used to define the scaffold. As shown in
Figure 8, the scaffold of the designed molecule 3 is the same as
that of the reference molecule 1, but the scaffold of the
molecule 5 is different from 1. The number of unique
molecules and unique scaffolds are summarized in Table 1.
The results clearly show that a large number of unique
molecules with a variety of the scaffolds were produced by the
current molecular evolutions. The ratios of the number of
unique molecules to the number of unique scaffolds were 4.88
for hAA2A and 4.70 for r5HT1A, respectively. This means that
the designed molecules that shared the same scaffold are less

Figure 9. Successful examples of r5HT1A ligand design. Structures with known NTG (NTG/CG) were successfully designed from seed fragments.
The NTG moiety is specified by bold atoms and bold bonds.

Table 1. Result of Scaffold Analysis Using NTG (NTG/CG)

GPCR SARfari designeda

target
active

moleculesb NTGsb moleculesb NTGsb
NTG-
sharedc

hAA2A 2214 811 2975 610 6
r5HT1A 3195 1260 4063 865 10

aFive reference molecules were used for the design. bDuplicates were
excluded. cNumber of NTG/CGs that are shared in both of the entries
of GPCR SARfari and the designed molecules.
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than five in average. For a comparison, the number of unique
NTGs that appeared in the active molecules in GPCR SARfari
is shown in Table 1, too.
The number of NTG scaffolds that shared in both of the

designed molecules and those of GPCR SARfari are also
summarized in Table 1. It shows that, for the case of hAA2A, 6
of the 811 NTGs appeared in GPCR SARfari’s molecules were
successfully designed by our approach without any special
consideration. In other words, six known (validated) scaffolds
and 604 new scaffolds were produced during the current
molecular evolution for the ligand design. For the case of
r5HT1A, 10 known scaffolds and 855 new scaffolds were
produced during the molecular evolution with the reference
molecules.
Comparison with Other Methods. The performance of

the current approach was compared with other methods. We
compared with two recent works, NovoFLAP19 and Flux,15

because they reported the chemical structures of both of
reference molecules and designed molecules. Here, we focused
on molecular similarity and medicinal chemistry viewpoint.
First, the study was performed using the reference molecules of
CP99994 (s1) and ICI (s6).19 Then, another study was
performed using the reference molecules of Gleevec (s11) and
a Factor Xa inhibitor (s14).15 The designed molecules with the
highest fitness are shown in Supporting Information Figures S1
and S2. When CP99994 (s1) was used as a reference, s2 was
designed as the best molecule and s3 was designed as the
second best molecule. The designed molecule s2 is very similar
to s1; the difference is only the substitution position of the
methoxy group. The difference between s1 and s3 was the size
of the central heteroring, in which such a design is not shown in
the literature. This type of designed molecule is medicinally
relevant because of an empirical knowledge that reducing the
ring size may improve metabolic stability.37 In the case of ICI
(s6), candidate molecules which have new molecular frame-
works (s7, s8) were produced by connecting the known
fragments in novel ways. Although it is difficult to strictly
compare the performance or the quality of different methods,
the result shows at least that the similar and medicinally
relevant analogues were successfully designed by our method.

■ CONCLUSIONS
We reported a similarity-driven simple evolutionary approach
to producing candidate molecules for drug design and
discovery. The method makes it possible to produce candidate
molecules that are similar to the reference molecule and yet
somewhat different in not only side chains but also their
scaffolds. And it is also expected that those candidate structures
are chemically feasible. The method was implemented on a
software tool and validated with the computer experiments for
the GPCR-related ligand design using our own fragment library
prepared from GPCR SARfari.
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