CHAPTER 3. APPLICATIONS of FIRST ORDER DIFFERENTIAL EQUATIONS

3.3. Growth and Decay Problems

Let N(t) denote the amount of substance (or population) that is either growing or decaying. If we assume that $\frac{dN}{dt}$ the time rate of change of this amount of substance is proportional to the amount of substance present, then

$$\frac{dN}{dt} = kN$$

or

$$\frac{dN}{dt} - kN = 0,$$

where k is the constant of proportionally

Example 1) The rate at which radioactive nuclei decay is proportional to the number of such nuclei that are present in a given sample. Half of the original number of radioactive nuclei have undergone disintegration in a period of 1500 years.

(a) What percentage of the original radioactive nuclei will remain after 4500 years?

(b) In how many years will only one – tenth of the original number remain?

Solution. Let N be the amount of radioactive nuclei present after t years. Since the nuclei decay at a rate proportional to the amount of present, we have

$$\frac{dN}{dt} = -kN,\tag{1}$$

where k > 0 is a constant of proportionality. Letting N_0 denote the amount initially present, we have initial condition

$$N(0) = N_0.$$

Moreover, since half of the original number of radioactive nuclei have undergone disintegration in a period of 1500 years, we also have

$$N(1500) = \frac{1}{2}N_0.$$

The differential equation (1) is clearly separable, integrating it we have

$$\ln|N| = -kt + \ln c$$

or

$$N(t) = ce^{-kt}.$$

Applying the initial condition $N(0) = N_0$, we get $N_0 = c$ and hence we have

$$N(t) = N_0 e^{-kt}.$$
(2)

To determine k apply the condition $N(1500) = \frac{1}{2}N_0$. So, we have $e^{-k} = \left(\frac{1}{2}\right)^{1/1500}$. Substituting e^{-k} into (2), we obtain

$$N(t) = N_0 \left(\frac{1}{2}\right)^{t/1500}.$$
 (3)

(a) $N(4500) = N_0 \left(\frac{1}{2}\right)^3$. So, one-eight or 12.5 % of the original number remain after 4500 years.

(b) From (3)

or

$$\frac{1}{10}N_0 = N_0 \left(\frac{1}{2}\right)^{t/1500}$$
$$\frac{1}{10} = \left(\frac{1}{2}\right)^{t/1500}.$$

. . .

$$\ln\frac{1}{10} = \frac{t}{1500}\ln\left(\frac{1}{2}\right).$$

From this it follows that

$$t = 1500 \frac{\ln\left(\frac{1}{10}\right)}{\ln\left(\frac{1}{2}\right)} = 1500 \frac{\ln 10}{\ln 2}$$

3.4. Temperature Problems

Newton's law of cooling, which is equally applicable to heating, states that the time rate of change of the temperature of a body is proportional to the temperature difference between the body and its surronding medium. Let Tdenote the temperature of the body and let T_m denote the temperature of the surrounding medium. Then the time rate of change of the temperature of the body is dT/dt, and Newton's law of cooling can be formulated as

$$\frac{dT}{dt} = -k\left(T - T_m\right)$$

or

$$\frac{dT}{dt} + kT = kT_m,$$

where k is a positive constant of proportionally.

Example 1) A body of temperature 80 °*F* is placed at time t = 0 in a medium the temperature of which is maintained at 50 °*F*. At the end of 5 minutes, the body has cooled to a temperature of 70 °*F*.

(a) What is the temperature of the body at the time of 10 minutes?

(b) When will the temperature of the body be 60 $^{\circ}F$?

Solution. Since $T_m = 50$ we have following separable differential equation

$$\frac{dT}{dt} + kT = 50k$$
$$\frac{dT}{kT - 50k} = -dt.$$
 (4)

or

Integrating (4), we get

$$\frac{1}{k}\ln\left(kT - 50k\right) = -t + \ln c_1$$

or

$$T(t) = 50 + ce^{-kt}.$$

Applying the initial condition T(0) = 80 we get c = 30 and so

$$T(t) = 50 + 30e^{-kt}$$
.

From the other condition T(5) = 70, we obtain that

$$e^{-k} = \left(\frac{2}{3}\right)^{1/5}$$

Substituting e^{-k} into (4), we obtain

$$T(t) = 50 + 30 \left(\frac{2}{3}\right)^{t/5}.$$
 (5)

(a)
$$T(10) = 50 + 30\left(\frac{2}{3}\right)^2 = \frac{190}{3}.$$

(b) It is asked that for which t the relation T(t) = 60 is satisfied. From (5) we have

$$60 = 50 + 30\left(\frac{2}{3}\right)^{t/2}$$

or

$$\left(\frac{1}{3}\right) = \left(\frac{2}{3}\right)^{t/5}$$

Using logarithms, we obtain

$$t = 5 \frac{\ln \frac{1}{3}}{\ln \frac{2}{3}}.$$