## CHAPTER 3. APPLICATIONS of FIRST ORDER DIFFERENTIAL EQUATIONS

### 3.3. Growth and Decay Problems

Let $N(t)$ denote the amount of substance (or population) that is either growing or decaying. If we assume that $\frac{d N}{d t}$ the time rate of change of this amount of substance is proportional to the amount of substance present, then

$$
\frac{d N}{d t}=k N
$$

or

$$
\frac{d N}{d t}-k N=0
$$

where $k$ is the constant of proportionally
Example 1) The rate at which radioactive nuclei decay is proportional to the number of such nuclei that are present in a given sample. Half of the original number of radioactive nuclei have undergone disintegration in a period of 1500 years.
(a) What percentage of the original radioactive nuclei will remain after 4500 years?
(b) In how many years will only one - tenth of the original number remain?

Solution. Let $N$ be the amount of radioactive nuclei present after $t$ years. Since the nuclei decay at a rate proportional to the amount of present, we have

$$
\begin{equation*}
\frac{d N}{d t}=-k N \tag{1}
\end{equation*}
$$

where $k>0$ is a constant of proportionality. Letting $N_{0}$ denote the amount initially present, we have initial condition

$$
N(0)=N_{0} .
$$

Moreover, since half of the original number of radioactive nuclei have undergone disintegration in a period of 1500 years, we also have

$$
N(1500)=\frac{1}{2} N_{0} .
$$

The differential equation (1) is clearly seperable, integrating it we have

$$
\ln |N|=-k t+\ln c
$$

or

$$
N(t)=c e^{-k t}
$$

Applying the initial condition $N(0)=N_{0}$, we get $N_{0}=c$ and hence we have

$$
\begin{equation*}
N(t)=N_{0} e^{-k t} \tag{2}
\end{equation*}
$$

To determine $k$ apply the condition $N(1500)=\frac{1}{2} N_{0}$. So, we have $e^{-k}=$ $\left(\frac{1}{2}\right)^{1 / 1500}$. Substituting $e^{-k}$ into (2), we obtain

$$
\begin{equation*}
N(t)=N_{0}\left(\frac{1}{2}\right)^{t / 1500} \tag{3}
\end{equation*}
$$

(a) $N(4500)=N_{0}\left(\frac{1}{2}\right)^{3}$. So, one-eight or $12.5 \%$ of the original number remain after 4500 years.
(b) From (3)

$$
\frac{1}{10} N_{0}=N_{0}\left(\frac{1}{2}\right)^{t / 1500}
$$

or

$$
\frac{1}{10}=\left(\frac{1}{2}\right)^{t / 1500}
$$

Using logarithms, we obtain

$$
\ln \frac{1}{10}=\frac{t}{1500} \ln \left(\frac{1}{2}\right)
$$

From this it follows that

$$
t=1500 \frac{\ln \left(\frac{1}{10}\right)}{\ln \left(\frac{1}{2}\right)}=1500 \frac{\ln 10}{\ln 2}
$$

### 3.4. Temperature Problems

Newton's law of cooling, which is equally applicable to heating, states that the time rate of change of the temperature of a body is proportional to the temperature difference between the body and its surronding medium. Let $T$ denote the temperature of the body and let $T_{m}$ denote the temperature of the surrounding medium. Then the time rate of change of the temperature of the body is $d T / d t$, and Newton's law of cooling can be formulated as

$$
\frac{d T}{d t}=-k\left(T-T_{m}\right)
$$

or

$$
\frac{d T}{d t}+k T=k T_{m}
$$

where $k$ is a positive constant of proportionally.

Example 1) A body of temperature $80^{\circ} F$ is placed at time $t=0$ in a medium the temperature of which is maintained at $50^{\circ} \mathrm{F}$. At the end of 5 minutes, the body has cooled to a temperature of $70^{\circ} \mathrm{F}$.
(a) What is the temperature of the body at the time of 10 minutes?
(b) When will the temperature of the body be $60^{\circ} \mathrm{F}$ ?

Solution. Since $T_{m}=50$ we have following seperable differential equation

$$
\frac{d T}{d t}+k T=50 k
$$

or

$$
\begin{equation*}
\frac{d T}{k T-50 k}=-d t \tag{4}
\end{equation*}
$$

Integrating (4), we get

$$
\frac{1}{k} \ln (k T-50 k)=-t+\ln c_{1}
$$

or

$$
T(t)=50+c e^{-k t}
$$

Applying the initial condition $T(0)=80$ we get $c=30$ and so

$$
T(t)=50+30 e^{-k t}
$$

From the other condition $T(5)=70$, we obtain that

$$
e^{-k}=\left(\frac{2}{3}\right)^{1 / 5}
$$

Substituting $e^{-k}$ into (4), we obtain

$$
\begin{equation*}
T(t)=50+30\left(\frac{2}{3}\right)^{t / 5} \tag{5}
\end{equation*}
$$

(a) $T(10)=50+30\left(\frac{2}{3}\right)^{2}=\frac{190}{3}$.
(b) It is asked that for which $t$ the relation $T(t)=60$ is satisfied. From (5) we have

$$
60=50+30\left(\frac{2}{3}\right)^{t / 5}
$$

or

$$
\left(\frac{1}{3}\right)=\left(\frac{2}{3}\right)^{t / 5}
$$

Using logarithms, we obtain

$$
t=5 \frac{\ln \frac{1}{3}}{\ln \frac{2}{3}}
$$

