Calculus II Week 4 Lecture

Oktay Olmez and Serhan Varma

Definite Integrals

The definite integral of f on $[a, b]$ is the total signed area of f on $[a, b]$, denoted

$$
\int_{a}^{b} f(x) d x
$$

where a and b are the bounds of integration.

The Fundamental Theorem of Calculus I

Let f be continuous on $[a, b]$ and let $F(x)=\int_{a}^{x} f(t) d t$. Then F is a differentiable function on (a, b), and

$$
F^{\prime}(x)=f(x)
$$

Example

Let $F(x)=\int_{-5}^{x}\left(t^{2}+\sin t\right) d t$. What is $F^{\prime}(x)$?
F is called an antiderivative of f

The Fundamental Theorem of Calculus II

Let f be continuous on $[a, b]$ and let F be any antiderivative of f. Then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

Properties

(1) $\int_{a}^{a} f(x) d x=0$
(2) $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$
(3) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
(9) $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
(5) $\int_{a}^{b} k \cdot f(x) d x=k \cdot \int_{a}^{b} f(x) d x$

Problems

(1) $\int_{-5}^{-2} \frac{x^{4}-1}{x^{2}+1} d x$
(2) $\int_{0}^{2} \frac{x^{3} d x}{x^{4}+1}$
(3) $\int_{0}^{1} \frac{e^{3 x} d x}{e^{4 x}-1}$
(4) $\int_{1}^{2} \frac{d x}{x(x-h)} h>0$

Problems

(1) $\int_{0}^{a} x \sin x d x$
(2) $\int_{3}^{4} \frac{x d x}{\sqrt{x^{2}-1}}$
(3) $\int_{0}^{\pi} x(\cos x)^{2} d x$
(4) $\int_{4}^{5} \frac{d x}{x(x-1)(x-2)(x-3)}$

Average of a function

The average value of a function $f(x)$ over the interval $[a, b]$ is given by

$$
f_{\text {avg }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Mean Value Theorem

If $f(x)$ is is a continuous function on $[a, b]$ then there is a number c in $[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

Example

Example

Determine the number c that satisfies the Mean Value Theorem for Integrals for the function $f(x)=\sin x$ on the interval $[0, \pi]$

