Calculus II Week 5 Lecture

Oktay Olmez and Serhan Varma

Area Between Curves I

$$
A=\int_{a}^{b}\binom{\text { upper }}{\text { function }}-\binom{\text { lower }}{\text { function }} d x
$$

Area Between Curves I

Area Between Curves II

Area Between Curves II

$$
A=\int_{a}^{b} f(x)-g(x) d x
$$

Example

Find the area of the region bounded by the curves

$$
x=1, \quad x=2, \quad y=\frac{2}{x^{2}-4 x+5}, \quad y=\frac{x^{2}-8 x+7}{x^{2}-8 x+16}
$$

Example

Find the area of the region bounded by the curves

$$
x=2, \quad y=0, \quad y=x \ln \frac{x}{2}
$$

Method of disk

The volume (V) of a solid generated by revolving the region bounded by $y=f(x)$ and the x-axis on the interval $[a, b]$ about the x-axis is

$$
V=\pi \int_{a}^{b} f(x)^{2} d x
$$

Method of disk

The volume (V) of a solid generated by revolving the region bounded by $x=f(y)$ and the y-axis on the interval $[c, d]$ about the y-axis is

$$
V=\pi \int_{c}^{d} f(y)^{2} d y
$$

Method of Washer

The volume (V) of a solid generated by revolving the region bounded by $y=f(x)$ and $y=g(x)$ on the interval $[a, b]$ where $f(x) \geq g(x)$, about the x-axis is

$$
V=\pi \int_{a}^{b} f(x)^{2}-g(x)^{2} d x
$$

Method of Washer

The volume (V) of a solid generated by revolving the region bounded by $x=f(y)$ and $x=g(y)$ on the interval $[c, d]$ where $f(y) \geq g(y)$, about the y-axis is

$$
V=\pi \int_{c}^{d} f(y)^{2}-g(y)^{2} d y
$$

Cylindrical shell method

The volume (V) of a solid generated by revolving the region bounded by $y=f(x)$ and the x-axis on the interval $[a, b]$, where $f(x) \geq 0$, about the y-axis is

$$
V=2 \pi \int_{a}^{b} x f(x) d x
$$

Cylindrical shell method

The volume (V) of a solid generated by revolving the region bounded by $x=f(y)$ and the y-axis on the interval $[c, d]$, where $f(y) \geq 0$, about the x-axis is

$$
V=2 \pi \int_{c}^{d} y f(y) d x
$$

