Calculus II Week 8 Lecture

Oktay Olmez and Serhan Varma

Sequences

A sequence is a set of ordered numbers. For example, the sequence 2,4 , $6,8, \ldots$ has 2 as its first term, 4 as its second, etc. The n-th term in a sequence is usually called a_{n}. The terms of a sequence may be arbitrary, or they may be defined by a formula, such as $a_{n}=2 n$.

$$
\begin{gathered}
a_{1}-\text { first term } \\
a_{2}-\text { second term } \\
\vdots \\
a_{n}-n^{t h} \text { term }
\end{gathered}
$$

Sequences

We denote a sequence by the following notations:

$$
\left\{a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}, \ldots\right\} \quad\left\{a_{n}\right\} \quad\left\{a_{n}\right\}_{n=1}^{\infty}
$$

We can also treat the sequence terms as function evaluations:

$$
f(n)=a_{n}=\frac{n+1}{n}
$$

Sequences

We say that

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

if we can make a_{n} as close as L as we want for all sufficiently large n.

$$
\lim _{n \rightarrow \infty} a_{n}=\infty
$$

if we can make a_{n} as large as we want for all sufficiently large n.

$$
\lim _{n \rightarrow \infty} a_{n}=-\infty
$$

if we can make a_{n} as small as we want for all sufficiently large n.

Sequences

Theorem

Given the sequence $\left\{a_{n}\right\}$ if we have a funnction $f(x)$ such that $f(n)=a_{n}$ and $\lim _{x \rightarrow \infty} f(x)=L$ then

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

Sequences: Limit properties

If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ convergent sequences then
(1) $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}$
(2) $\lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}$
(3) $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} b_{n}\right)$
(9) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$, provided $\lim _{n \rightarrow \infty} b_{n} \neq 0$

Sequences: Squeeze theorem

$$
\begin{aligned}
& \text { Theorem } \\
& \text { If } a_{n} \leq c_{n} \leq b_{n} \text { for all } n>N \text { for some } N \text { and } \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=L \text { then } \\
& \qquad \lim _{n \rightarrow \infty} c_{n}=L
\end{aligned}
$$

Sequences: Limits

Theorem
 If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ then

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

Sequences: Limits

Theorem

The sequence $\left\{r^{n}\right\}_{n=0}^{\infty}$ converges if $-1<r<1$ and diverges otherwise. If it converges then

$$
\lim _{n \rightarrow \infty} r^{n}=0
$$

Sequences: bounded sequence

Given any sequence $\{a n\}$ we have the following.
We call the sequence increasing if $a_{n}<a_{n+1}$ for every n.
We call the sequence decreasing if $a_{n}>a_{n+1}$ for every n.
If $\{a n\}$ is an increasing sequence or a decreasing sequence then we call it monotonic.
If there exists a number m such that $m \leq a_{n}$ for every n we say the sequence is bounded below.
If there exists a number M such that $a_{n} \leq M$ for every n we say the sequence is bounded above.
If the sequence is both bounded below and bounded above we call the sequence bounded.

Sequences: bounded sequences

Theorem
If $\{a n\}$ is bounded and monotonic then $\{a n\}$ is convergent.

