Calculus II Week 11 Lecture

Oktay Olmez and Serhan Varma

Power series

A power series about a, or just power series, is any series that can be written in the form,

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

Power series

$$
\begin{array}{cl}
a-R<x<a+R & \text { power series converges } \\
x<a-R \text { and } x>a+R & \text { power series diverges }
\end{array}
$$

R is called is called the radius of convergence.
The interval of all x s, including the endpoints if need be, for which the power series converges is called the interval of convergence of the series. This interval must contain $a-R<x<a+R$.

Example

Determine the radius of convergence and interval of convergence for the following power series.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{4^{n}}(x+3)^{n}
$$

Power series representation

$$
\begin{equation*}
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \quad \text { provided }|x|<1 \tag{1}
\end{equation*}
$$

Example: Find a power series representation for the following function and determine its interval of convergence.

$$
g(x)=\frac{1}{1+x^{3}}
$$

Power series representation

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots
$$

Derivative of power series representation

$$
\begin{gathered}
f^{\prime}(x)=\frac{d}{d x} \sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\cdots \\
=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}
\end{gathered}
$$

Integral of power series representation

$$
\begin{aligned}
\int f(x) d x & =\int \sum_{n=0}^{\infty} c_{n}(x-a)^{n} d x \\
& =\sum_{n=0}^{\infty} \int c_{n}(x-a)^{n} d x \\
& =C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
\end{aligned}
$$

Fact

If $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has a radius of convergence of R $\int f(x) d x=\int \sum_{n=0}^{\infty} c_{n}(x-a)^{n} d x$ and $f^{\prime}(x)=\frac{d}{d x} \sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ both have the radius R.

Fact

Find a power series representation for the following function and determine its interval of convergence.

$$
h(x)=\ln (2-x)
$$

Fact

Find a power series representation for the following function and determine its interval of convergence.

$$
h(x)=\frac{1}{1+x^{2}}
$$

