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The Hardy-Weinberg Model

The HW model is a way of demonstrating the relationship between allele and genotype frequencies. It is
mathematically basic but very important for understanding how different processes can alter these frequencies.
As you might recall from the main text, the model has five major assumptions:

1. All individuals in the population mate randomly.
2. The population is infinitely large.

3. No selection occurs.

4. No mutation occurs.

5. No gene flow occurs.

Imagining our idealized population, we will focus on a single locus, A which has two alleles, A; and A,. We
can use p to denote the frequency of the A allele and g for A,. This means that if we know p, we can derive
qgasq =1 — p, since p + g = 1. Remember that the HW-model is a means of representing the relationship
between allele and genotype frequencies across generations. With our assumptions outlined above in place,
the only thing that determines the frequency of genotypes is their probabilities, derived from the allele
frequencies.

It is quite simple to determine these probabilities. With 2 alleles A; and A5, we have three possible genotypes
and three ways to determine their probabilities as:

« AjAy :P2
« A1 Ay =2pq
o AyAy = q2

Another way to look at these probabilities is as the expected frequencies of the three genotypes at Hardy-
Weinberg equilibrium given the allele frequencies. Let's use some R code to actually demonstrate how we
might calculate these expected frequencies. For our test example, we will use a simple case where the
frequency of A, pis 0.8 and the frequency of A,, q is 0.2.

# first we set the frequencies

p <- 0.8

qg<-1-p

# check p and q are equal to 1

(q + p) ==

# calculate the expected genotype frequencies (_e denotes expected)
AlAl e <- p"2

AlA2 e <- 2 * (p * q)

A2A2_e <- g~2

# show the allele frequencies in the console

c(A1A1l_e, AlA2_e, A2A2 e)

# since these are genotype frequencies, they should also sum to 1 - you can check this Like s
o

sum(c(A1Al_e, A1A2_e, A2A2 e))

So you can see it is quite easy to calculate the frequencies you need for the HW model in R. If you want to,
you can play around with the initial frequencies defined at the start of the R code to see how it alters the
genotype frequencies. This is one nice thing about using R for evolutionary genetics, it is pretty simple to
demonstrate things mathematically to benefit your own understanding. However, it might be even more useful
to demonstrate the relationships the HW model lays out graphically. That way you can see how the expected
genotype frequencies are altered over a whole range of allele frequencies. Luckily for us, R is great for this sort
of visualisation and this is an excellent opportunity to demonstrate some programming in R.

Plotting the expected genotype frequencies
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The first thing we need to do is generate a range of allele frequencies to visualize the expected genotype
frequencies across. We'll do this in the simplest way first, before going into how you might take a programming
approach to the same problem. Either way, generating a range is simple - we just need to do it for a single
allele, A; and then we can very easily derive the frequency of A,. We will do this like so:

# generate a range for p
p <- seq(@, 1, 0.01)

# and also for q
q<-1-p

All we did here was use the seq function, which we first saw back in Chapter 1
(https://evolutionarygenetics.github.io/Introduction.html). Remember, we only have to do it once because q is
the inverse of p. Next we need to generate the expected frequencies. Because R is really great at handling
vectors, the code for this is identical for if we were using a single value.

# generate the expected genotype frequencies
Al1Al e <- p~2

A1A2 e <- 2 * (p * q)

A2A2_e <- g"2

So now we basically have the expected frequencies at HWE of our different genotypes across a range of allele
frequencies with just a little vector calculation. However, recalling from before that we often need to get our
data into a data.frame in order to use ggplot2, we need to do a bit of work on this first. We’ll now get our
data into a tibble ready for working on...

# arrange allele frequencies into a tibble/data.frame
geno_freq <- as.tibble(cbind(p, q, AlAl_e, AlA2_e, A2A2_e))

## Warning: “as.tibble()" is deprecated, use “as_tibble()" (but mind the new semantics).
## This warning is displayed once per session.

You also might remember from the previous session that we need to sometimes do some data manipulation to
get the data into a form that we can easily plot. Luckily, this is quite straightforward in this case as we can use
the gather function to do it quickly and easily.

# Use gather to reshape the data.frame for straightforward plotting
geno_freq <- gather(geno_freq, key = "genotype", value = "freq", -p, -q)

Now it is really straightforward to make a plot that shows the expected HW—frequencies across our allele
frequencies.

# plot the expected genotype frequencies

a <- ggplot(geno_freq, aes(p, freq, colour = genotype)) + geom_line()
a <-a + ylab("Genotype frequency") + xlab("p frequency")

a + theme_light() + theme(legend.position = "bottom")
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Some programming tricks for the HW model

The example above, where we derived the expected frequencies of the HW-model took advantage of R’s
ability to easily handle vectors. In principle, this is the simplest way to achieve what we wanted and it was
quick and clear to code. However, there are actually several different ways we could have approached this
issue using some programming tricks. We will introduce these briefly here as a demonstration but these are
topics we will return to throughout these tutorials. First up, we will delve into using a for loop.

For whom the bell tolls

What if we want to calculate the genotype frequencies on the fly? So rather than using 4-5 separate lines of
code to generate the range of allele frequencies and expected frequencies, we could do it all in one short code
block? One way to do this might be to use a for loop. To imagine what a for loop does, it is essentially a
block of code that is repeated for different values. In plain language, we are saying for each value of x, do y.
This might actually be a little confusing the first time you encounter it but a simple example might help so
before we run an example with the allele frequencies, we will show the simplest for loop we can.

for(x in 1:10){
print(x)
¥

What happened here? Firstly you will see for is highlighted a bit differently to a normal function - this is
because it is a control flow statement - i.e. reserved for programming in the R environment. The standard
structure of a for statmentin Ris for(variable in vector) -inthe example above, we wrote

for(x in 1:10) . All this means is that we are cycling through 1:1e and for each value of this (i.e. 1, 2, 3 and
so on), we will call it x and then do something to it. The curly brackets that follow our for statement are what
we will then ‘do’ to our value of x . In this case, we simply print x to the screen.

We can do much more than this though - what if we want to add 10 to each value of x?
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for(x in 1:10){
print(x + 10)
}

Note that in this simple example, we need to print X each time. We might not want to print each value of x,
instead we might just assign it to a vector. So, let’s return to our genotype frequency example. We will write out
the full for loop and then break it down in to more detail.

# set up p

p_vec <- seq(0, 1, 0.01)

# initiate null vectors for the expected frequencies
Al1A1 e <- NULL

A1A2_e <- NULL

A2A2_e <- NULL

# run the for Loop

for(p in p_vec){
# define q
q<-1-p
# calculate genotype frequencies
A1A1l_e <- append(AlAl_e, p~2)
A1A2 e <- append(AlA2_ e, 2 * (p * q))
A2A2_e <- append(A2A2_e, g"2)

}

# combine them into a matrix (as an example here)
cbind(A1A1_e, A1A2_e, A2A2_e)

This block of code is a bit trickier than the simple examples of for loops we showed previously but the
general principle is the same. The main difference here is that we first had to declare NULL variables so that
we could save the output of our loop. For each value of p, our loop first calculates g, then it calculates all the
genotype frequencies. You will see that it also uses the append function to save each calculation to the null
variables we initiated before running the loop. Note that we also demonstrated here that you can change what
you will call the variable in a for loop. For example, here we changed it to p , whereas our original example
used x.

By now you might be reasonably looking at this code and thinking - well surely this is much more complicated
than the 4-5 lines we wrote previously? And you’d be absolutely right! Although we used this as a
demonstration of how to use a for loop, it is also a neat demonstration of the fact that you don’t have to
overcomplicate things - sometimes the simplest code is best.

Vectorisation

Actually there is another lesson we can learn here - for loops in R are often not optimal. They can be slow
when applied to very large amounts of data for a start and also they are often unnecessarily complicated - as
we saw above. In these cases, if we do want to use a programming approach it is much better to use
vectorisation. This is generally a much faster and more lightweight approach than control flow statements. To
demonstrate the power of vectorisation, we will use the sapply function. However, it can seem a bit
counterintuitive the first time you encounter it. As with the for loop, we will give simple examples first.

sapply(1:10, function(x) x)

Firstly, this is identical to the first for loop we showed you. Let’s break it down. sapply stands for ‘simple apply’
and it does exactly that. You give it a vector, 1:10 in this case and then it does something to each value of
that vector. The function(x) statement basically just says we are going to call each element of our vector x .
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After this, we can actually write what we want to do x ; since here all we wrote is x , we are just printing it to
the screen. What if we want to add 10 to each value of our vector, like with our second for loop example?

sapply(1:10, function(x) x + 10)

Pretty simple but not hugely different right? Well it is when we ramp up the complexity that you will start to see
the difference. Let’s try rewriting the complex for loop as a vectorised operation here. We’'ll introduce it and
then break it down.

# set up p
p_vec <- seq(0, 1, 0.01)

geno_freq <- sapply(p_vec, function(p){
# define q
q<-1-p
# calculate probabilities
AlALl e <- p~2
AlA2_e <- 2 * (p * q)
A2A2 e <- g"2
# write out
c(A1A1_e, AlA2_e, A2A2 e)
)

# transpose the matrix to get it the right way up!
geno_freq <- t(geno_freq)

OK, so that is still more code than with the simple vector calculation approach. However, this hopefully
demonstrates how a vectorised approach provides a simpler solution to a for loop. If the length of p_vec
was longer too, the vectorised approach would be much faster. The main thing here is that the code for the
vectorised approach is identical to that when we did the vector calculations, except it is just wrapped in an
sapply function. You'll also notice the {} brackets are in this use of sapply . They are not needed when we
do a simple, one line sapply call, but here with a more complicated function, we do need them to make things
easier to read. One other point to note is that again we changed x to p inthe function(p) statement -
demonstrating once more that you can call your variables inside your vectorised functions whatever you'd like.
Finally the t function is just a simple call to transpose the matrix that sapply outputs. You can try running the
code without this and look at what geno_freq looks like - you'll see it is orientated oddly if we want to use it in
plotting.

A not so final word on vectorisation and for loops

In a moment, we'll jump back into the evolutionary genetics again. However we just want to reiterate that the
aim here is to introduce you to these concepts. It takes a lot of practice to become familiar with loops and
vectorisation. They can both be very confusing when you start out with them. Personally, we try to avoid for
statements where possible - vectorisation is usually always superior (although not always)! We will certainly
return to these techniques - the aim here was to give you a taster.

Testing for deviations from the Hardy-Weinberg
Expectation

We've already learned that the HW model is essentially an idealised scenario where no demographic or
evolutionary processes are shaping the relationship between allele and genotype frequencies. We can
therefore use it as a null model against which to test our data. Basically, we can compare our observed
genotype frequencies from those expected under HWE. To get the expected frequencies, we just generate
them from the allele frequencies, as we did in the previous section of the tutorial.
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We can work through an example of this together. Once again we’ll assume a locus A with two alleles, A; and
As. This means three genotypes, A1 A1, A1 Ay and Ay A5. We sample 150 individuals from a population.
The next block of R code shows the numbers of each genotype we collected and also combines them into an
observed vector - for later use.

# numbers of genotypes

Al1Al <- 80
A1A2 <- 15
A2A2 <- 55

# make into a vector
observed <- c(A1A1, A1A2, A2A2)

In order to go further here, we need to work out the allele frequencies from our observed data. This is quite
straightforward - homozygotes have two copies of an allele whereas heterozygotes have only one. So we
derive the number of each allele and divide it by the total:

p— 2(A;14;) + A1 A

n
_2(AyAy) + Ay Ay

n

Where the genotype notation here represents the number of genotype class and n is the total number of
alleles. We can calculate the frequency the alleles in R like so:

calculate total number of alleles
<- 2*sum(observed)

calculate frequency of Al or p

<- (2*(A1A1) + A1A2)/n

calculate frequency of A2 or q

<- (2*(A2A2) + A1A2)/n

print frequencies to screen

(p, Q)

N H# O ¥ T ¥ S5 H

Note that with the code above, we summed the number of observed genotypes and then multiplied by 2 as
there are 2 alleles for each individual (i.e. there are 150 individuals and 300 alleles). We now have the allele
frequencies, so we can use the code we worked out in the previous section to calculate the expected Hardy-
Weinberg frequencies for this population.

# generate the expected genotype frequencies
AlAl e <- p”2

AlA2 e <- 2 * (p * q)

A2A2_e <- g2

# combine into a vector

expected_freq <- c(AlAl_e, AlA2_e, A2A2_e)

So now that we have the expected genotype frequencies, the last thing we need to do before testing whether
there is a deviation from HWE in our data is calculate the expected number of each genotype. This is easy -
we just multiply the frequencies by the number of individuals we sampled - 150.

# calculate observed genotype frequencies
expected <- expected_freq * 150

The next thing we’d like to do is see whether our observed genotypes deviate from the expected. We will test
this formally, but first let’s just look at the differences between them. The simplest way to do this is combine
them into a matrix:
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# combine observed and expected frequencies into a matrix
mydata <- cbind(observed, expected)

# add rownames

rownames (mydata) <- c("A1A1", "A1A2", "A2A2")

Well, just from eyeballing this matrix, it does look like there is probably a difference. Notably there seems to be
a lower frequency of heterozygotes than we expect. Still, just looking at this is not enough, we need to test it
formally. As you will probably remember from the main text, we can use a Chi-squared goodness of fit test
for this purpose. The Chi-squared test is quite straightforward:

XZZZ E

=1

In other words, this is the sum of the squared differences between the expected and the observed, divided by
the expected. It sounds complicated but with R’s vector handling capabilities, we can do this extremely easily:

chi <- sum(((expected - observed)”2)/expected)

Our chi-squared value is very high. But we still don’t know if it is significant. To do this we need to check our
value against the known distribution of chi-squared. This is very easy to do in R using the pchisq function.
This is part of a suite of functions for probability distributions which we will explore more thoroughly in a future
tutorial. But for now, let’'s work out whether our value is significant.

1 - pchisq(chi, df = 2)

pchisq takes two arguments, the chi-squared value and the degrees of freedom. For our chi-squared test
here, we use 2 degrees of freedom. You can see that our p-value is 0 - this means we have a highly significant
deviation from HWE - in other words, some assumption of the Hardy-Weinberg model is violated. What
process could cause this significant heterozygote deficit? Maybe non-random mating?

An easier way?

Since the chi-squared test is such a fundamental statistical tool, it probably won’t surprise you to find that there
is actually already a chisq.test function for you to use. We didn’t explain it earlier because... well calculating
things by hand is sometimes the best way to learn! The function is handy though since we can calculate the
chi-squared value and also test the significance in one go. We can use it like so:

# perform a chi-squared test
mychi <- chisq.test(observed, p = expected_freq)

Here we provide the chisq.test function with our observed genotype counts. However, we also need to
specify our expected frequencies, so there is still some calculation required. Nonetheless, the function returns
the same chi-squared value we have previously calculated and shows us that we have a highly significant
deviation from the expectation.

Note as well that the mychi object has a lot of information stored within it. We can take a closer look using the
following:

str(mychi)

Using the dollar sign notation we learned about in Chapter 1
(https://evolutionarygenetics.github.io/Introduction.html), we can extract any of these at will. For example
mychig$expected will produce the expected values whereas mychi$statistic will produce the chi-squared
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value.

Simulating genetic drift

One of the main assumptions of the HW model is that populations are infinite. This is obviously unrealistic! All
populations are finite - but what does this mean for how evolution unfolds? An important concept in
evolutionary genetics is how population size can influence the relative power of a process such as genetic
drift. Drift essentially describes the random component of survival in a population - some individuals will
survive and reproduce more than others by chance. An important factor contributing to such genetic drift is the
random sampling of alleles that takes place at fertilization. For instance, just like some pairs produce an
excess of sons and daughters, a heterozygous mating pair (41 A5) can produce offspring with an excess of
the genotypes A; A, (or A5 A,) thereby causing a random change in allele frequency in the population. When
a population is large, the effects of drift will be small relative to other processes such as selection. However,
when a population is small, drift as a result of random chance has a much bigger effect.

One of the best ways to get your head around a concept like genetic drift and how it interacts with population
size is to actually simulate, which is exactly what we are going to do here. We'll first explain how we can
simulate it over a single generation and then we are going to build our own custom R function to do all the
leg work for us. So we’'ll not only be exercising your understanding in evolutionary genetics, but also your R
programming chops too.

A simple case of genetic drift over a single generation using the
binomial distribution

To demonstrate a simple case of drift, we'll use the example from the book. We have a population of N =8
individuals and we will focus on a single locus A with two alleles, A; and A5. We will assume both alleles are
equally common in the population - i.e. p = g = 0.5. Our little population is in HWE such that there are two of
each A;A; and A5 A, homozygotes and four A; A, heterozygotes.

To simulate drift, we need to allow individuals to mate at random. In the book you will recall we used a coin-
flipping experiment to sample our alleles to form genotypes, since both alleles have a frequency of 0.5. This is
essentially a form of binomial sampling. We can easily recreate this in R using the rbinom function to
sample the binomial distribution. We will recreate the coin-tossing experiment exactly here, using the following
code:

# recreate coin flipping experiment using binomial sampling
rbinom(n = 16, size = 1, prob = 0.5)

What did we do here? Like with the pchisq function we used before, we made use of R’s suite of functions for
statistical distributions (a topic we will cover in more detail later). The rbinom function just allows us to sample
the binomial distribution. With the n = 16 flag, we sampled it 16 times. We set the size to 1 - meaning we
sample either 0 or 1 (i.e. heads or tails) and finally we set the probability of sampling to the same for both
outcomes with p = 0.5.

However, in the textbook we actually used pairs of coin flips to simulate genotypes. We could do this in R, but it
is a bit clunky (it is much easier to just flip a coin!) so we could actually use binomial sampling in a different
way to achieve this. We could set the size of the population as N and then just sample one value from the
distribution. This value could then represent the number of A; alleles in the next generation - so we could
easily work out p” and q . We'll also take this opportunity to set the value of p here.
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# set population size

N <- 8
# set allele frequency
p <- 0.5

# recreate coin flipping experiment using binomial sampling
nAl <- rbinom(1, size = 2*N, prob = p)

Remember since we are sampling alleles for diploid individuals, we need to multiply N by 2. The value of nA1
will differ for everyone since this is a random sample of the binomial distribution. We can now easily work out
the value of p” - i.e. the new frequency of the A in the next generation. Note that R doesn’t allow the prime
notation so for the actual R code, we will use pa.

# calculate p~
pa <- nAl/(2*N)

OK so now we have a value for pa - again it will differ for everyone because we performed random sampling.
You will see though that pa is likely differentto p solely because of random sampling - i.e. we have
demonstrated drift over a single generation. To properly understand drift over multiple generations, we will
need to use some quite advanced R code - so for the next section, we will take a break from population
genetics and instead focus on how to write a custom R function.

Writing your own R functions

Writing functions in R is an extremely useful thing to learn. It might seem a little daunting but it is actually quite
straightforward once you have a handle on the basic format and structure necessary. Functions can be useful
for cleaning up your code - instead of writing the same code block again and again, you can use your own
function! You also might want to do it to then wrap it in a more complicated operation - like a for loop or a
vectorised approach. We will actually build towards something like the latter, but for now we will just use a
simple example. Let’s write a function that adds 10 to any numerical value we give it.

# write a custome function to add 10 to every numerical variable it is given
add_ten <- function(x){

y <- x + 10

return(y)

¥
# test it out

add_ten(100)
add_ten(1000000)
add_ten(22)

Let’'s breakdown what we did here in a bit more detail. Firstly, we need to give our function a name - in this
case we called it add_ten . Crucially, this is also an object we assign. Once assigned, the function is callable in
the R environment, just like any other function we load from a package or in the standard R distribution. We
then use the statement function(x) to show itis a function. The x here is the name of the variable we pass
to our function. The name here is completely arbitrary; we could just as easily use a human name or anything
we choose. However, what we pass to the function will be referred to this throughout.

Inside the curly brackets - {} is the body of our function. Here we define a new object y that is simply the
value of x plus 10 . Finally, we use the return() function to tell R to produce the value of y when we use
our add_ten function. We can really write a function for almost anything in R and it wouldn’t take us long to fill
this tutorial with example after example. For now though, we will show you just one more example - a function
that takes two arguments, instead of just one like our add_ten function did. This time, we will write a function
to multiply two numerical values.
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# write a custome function to multiply two numerical variables
multiply <- function(x, y){

zZ<- X *y

return(z)

}
# test 1t out

multiply(10, 10)
multiply(3, 5)
multiply (22, 44)

So this is exactly the same as before, but now we are passing two arguments - x and vy . In the body of the
function, we multiply them both and then return the answer. Hopefully this demonstration of how to write
functions is a sufficient example. As with our previous programming topics, it is something we will return to
throughout the course, building on it further and further. Again, we certainly don’t expect you to go from these
examples to writing complex functions!

Using a custom function to simulate drift over multiple
generations

Recalling our code for simulating genetic drift, let's do the same thing again but this time wrap it in a simple
function. To start with we do this only for a single generation.

# a custom function for simulating drift in a single generation
drift_sim <- function(N, p){

pA <- rbinom(1, 2*N, p)

p <- pA/(2*N)

return(p)

}
# run drift sim on the example data above
drift_sim(N = 16, p = 0.5)

Now we have the drift_sim function, we can easily play around with the allele starting frequency(i.e. p ) and

also the population size. But we still haven’t managed to extend our simulations across multiple generations.
Now we have the basic function, we can alter it to do just that:

# a custom function for simulating drift across multiple generations
drift_sim <- function(N, p, ngen){
# initialise p
p_init <- p
# sample across all the generations
pvec <- sapply(1l:ngen, function(x){
pA <- rbinom(1, 2*N, p)
p <<- pA/(2*N)
}
# create a vector of p over time
p <- c(p_init, pvec)
# write out
return(p)
}
# run drift sim on the example data above
drift_sim(N = 16, p = 0.5, ngen = 100)
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OK so this will require a little explaining! Firstly you will notice we have added the ngen argument - which is
the number of generations. Inside the function, we need to define the initial value of p - i.e. before the
simulations begin - pinit . We then use an sapply call to use run our code over each generation. Each time
we do this, we update the value of p - this explains the double arrow <<- we used. We have to do this
updating because otherwise the value of p will also be reset to the initial value, which is not suitable when
simulating drift over time. The final part of the function outputs our vector p and includes the original, initiating
value first.

Now that we have a function to simulate data, across generations, we can easily do this for different population
sizes. Let’s simulate 1000 generations of drift for three populations of 10, 100 and 1000 individuals. We’'ll keep
the initial allele frequency, p at 0.5 in all cases. We will then combine them all into a tibble alongside the
number of generations

# simulate drift for three different population sizes
nle <- drift_sim(N = 10, p = 0.5, ngen = 1000)

nlee <- drift_sim(N = 100, p = 0.5, ngen = 1000)
n1l000 <- drift_sim(N = 1000, p = 0.5, ngen = 1000)

# get number of generations

g <- seq(@, 1leee0, 1)

# combine into a tibble

mydrift <- as.tibble(cbind(g, nl1l@, nle0, nle00))

Note that we could also have run drift_sim in a single line of code using sapply like so:

# simulate drift for three different population sizes

a <- sapply(c(1e, 1ee, 1000), drift_sim, p = 0.5, ngen = 1000)
# rename matrix

colnames(a) <- c("n1@", "nlee", "nleee")

# get number of generations

g <- seq(0, 1leee, 1)

# combine into a tibble

mydrift <- as.tibble(cbind(g, a))

Both ways work, but this is a nice demonstration of how you can use something like sapply to make your
code more succinct. Anyway, what we ultimately want to do is visualise drift over time. So we need to get our
data in a position to plot it using ggplot2 - once again, we turn to gather .

# use gather to get data ready for plotting
mydrift <- gather(mydrift, key = "pop_size", value = "p", -g)

All we did here was collapse the population sizes into a single factor for each generation. gather commands
can take a while to get the hang of, the best thing is to continually practice them like this! Now we will plot our
data using the following code:

# plot data

p <- ggplot(mydrift, aes(g, p, colour = pop_size))

p <- p + geom_line()

p <- p + xlab("No. generations") + ylab("Allele freq (p)")

p + theme_bw() + theme(legend.position = "bottom", legend.title = element_blank())
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And there we have it! A plot of our simulated data showing allele frequency changes over time as a result of
genetic drift. Although the plot you get will differ from the one you see here (because of the random sampling),
what you should be able to see is that with a low population size alleles are either lost or go to fixation very
rapidly. This is because the effect of drift is much stronger here, whereas in larger populations it may take a
long time for drift to fix or remove an allele - indeed in some cases it will not happen at all.

Study questions

For study questions on this tutorial, download the chapter3_R_questions.R from Canvas or find it here
(https://evolutionarygenetics.github.io/chapter3_R_questions.R).

Going further

There are a lot of great resources available on programming in R and evolutionary genetics. There are also
some good further tutorials on understanding HWE and drift in R too. Below is a collection of resources you

might find of use.

» The software carpentry github has an extensive set of tutorials for learning R programming
(https://swcarpentry.github.io/r-novice-inflammation/)

» A great datacamp tutorial on functions and functional programming
(https://www.datacamp.com/community/tutorials/functions-in-r-a-tutorial)

» Hadley Wickham’s Advanced R tutorials (http://adv-r.had.co.nz/Functions.html)

« A comprehensive guide to vectorisation in R (http://www.noamross.net/blog/2014/4/16/vectorization-in-r-
-why.html)

« Datacamp’s loop tutorial (https://www.datacamp.com/community/tutorials/tutorial-on-loops-in-r)

« An excellent and very detailed primer on population genetics in R
(http://grunwaldlab.github.io/Population_Genetics_in_R/index.html)
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