4. Dogal secilim teorisi

Teorik

Stabilizing selection Disruptive selection Directional selection

Freguency
Freque ncy
Frequency

Phenoty pic trait value Phenotypic trait value Phenotypic trait value

Figures and Tables were taken from Satre, G. P., & Ravinet, M. (2019). Evolutionary genetics: Concepts, analysis, and practice. Oxford University Press, USA. For educational purpose only

1-
0.9
0.8 -
0.7
0.6
0.5
04
0.3 1
0.2
0.1

Mean popul ation fitness (W)
Frequency of A, (p)

D - - : - - - ; T 1
0 0.1 02 03 04 05 0.6 0.7 08 09 0 5 10 15 20 25 30 35 40 45 50
Frequency of A, (p) Time {(number of generations)

Figures and Tables were taken from Satre, G. P., & Ravinet, M. (2019). Evolutionary genetics: Concepts, analysis, and practice. Oxford University Press, USA. For educational purpose only

L - - T = R
ki
I

B
=,
1]
=2,

[

Mean population fitness (W)
00D 00D 00O
%] L =y
—
]

=h
"

0

0 010203 04 05 0.6 0.7 08 0.9 1
Frequency of Ay (D)

1,0 —
— \.'
C T T AN
< NN
- B
o 06 e N
= e
e 04- e
=] - -
g 02| ~ 7
L .-’" --____.-'"'
0,0 +——— : : :
0 5 10 15

Time (number of generations)

Figures and Tables were taken from Saetre, G. P., & Ravinet, M. (2019). Evolutionary genetics: Concepts, analysis, and practice. Oxford University Press, USA. For educational purpose only

1 Ll
iz /’
= ~ 0.8 -
ﬁ 0.8 =%
— -
= W =
L =ﬂ LE. u.ﬁ =
E L 3 E
_3 0.4 . Wy =W, E 0.4 4
2 g
502 w2 -
wal
= 13
0 : —— . . 0 - . : . . : :
0 0.2 0.4 0.6 0.8 1 0 5 10 15 20 25 30
Frequency of A, (p) Time {number of generations)

Figures and Tables were taken from Satre, G. P., & Ravinet, M. (2019). Evolutionary genetics: Concepts, analysis, and practice. Oxford University Press, USA. For educational purpose only

2.5 1

1.5 4

Fitness

0.5 -

Fitness

0 05
Frequency of blue morph

M ean population fitn ess

0 05
Frequency of blue morph

1.5 1

0.5

(i} 0.5 1
Frequency of blue morph

Mean population fitness

0 05 i
Frequency of blue morph

Figures and Tables were taken from Satre, G. P., & Ravinet, M. (2019). Evolutionary genetics: Concepts, analysis, and practice. Oxford University Press, USA. For educational purpose only

25 ;

= *
wy=u,;
2- l
bt
1.5 1
- w3
&
&= 1 Wao Wiy
L5]
1
E.E' 05 -
=
T 0 B
g 0 0.5 1
U _05-
-1 +b a
-1.5.

Frequency of A, (p)

Figures and Tables were taken from Satre, G. P., & Ravinet, M. (2019). Evolutionary genetics: Concepts, analysis, and practice. Oxford University Press, USA. For educational purpose only

S— ' ' e

0 05 i 0 05 1

Frequency of hawiks {p) Frequency of hawiks (p)

W,

p—

W+ WI2 0,

"5

W, + V=02

Mean population fitness
Mean population titn

WIC
0 05 1 0 05 1
Frequency of hawks (o) Frequency of hawks (o)

Figures and Tables were taken from Satre, G. P., & Ravinet, M. (2019). Evolutionary genetics: Concepts, analysis, and practice. Oxford University Press, USA. For educational purpose only

{F = M) Fitness Frequency Offspring genotype

" fir Rif
rx i 1 7, 1
rr Rr 1-0.55 9T 05 0.5
ir = AR 1-5 8.9, 1
firw 1 .4, 05 0.5
Rr= Rr 1 7 0.25 0.5 025
Rr= KR 1 [0.5 05
BB i 1 [1
RR = Rr 1 LR 0.5 05
RR = RR 1 T 1

$
]
s

-
-

L]
»

Figures and Tables were taken from Satre, G. P., & Ravinet, M. (2019). Evolutionary genetics: Concepts, analysis, and practice. Oxford University Press, USA. For educational purpose only

4. Dogal secilim teorisi

Uygulama

Note here that when defining our vector a, we also actually named each element of it. Names work a little
differently in vectors to how they do in a data.frame . For exmaple, a$A1A1 will not work. However
a["A1A1"] does.

Returning to the population genetics, we formulated things a little differently to how you first encountered this
example in the main text, in order to demonstrate some R code. Nonetheless, the results and the general
process are the same. Essentially, we define fitness relative to the maximum fitness. Since both A; A and
A, A, produce the highest number of offspring, their fitness is 1 whereas A5 A5 has a lower relative fitness.

We might also want to calculate the mean population fitness, denoted as w. This is essentially the sum of
the relative fithess of each genotype multiplied by the genotype frequency. With R, calculating this is simple -
we simply multiply a vector of genotype frequencies with the relative fitness and sum the result. We do this
below:

define the genotype frequencies - note different way to define!
geno_freq <- c(A1Al = 0.65, A1A2 = 0.15, A2A2 = 0.2)

calculate mean population fitness

w_bar <- sum(rel_fit * geno_freq)

So far, we have dealt with fithess for genotypes. This makes sense because selection acts on genotypes (and
the phenotypes they convey). But what if we want to define the fitness of a specific allele? In this case, things
become a bit more complicated because allelic fithess depends on the genotype the allele finds itself in. In our
previous example, A, has a high fitness when it is in the heterozygous A A5 genotype, but not when it is
homozygous.

To account for this, we estimate marginal fitness for a given allele ¢ as w}. So for two alleles, the marginal
fitness is:

* W] = pwi + QW12
* W] = pwia + qWas

Where p and q are the frequencies for A; and A, respectively. In other words, marginal fitness is a
component of the fitness of the genotypes an allele occurs in AND the frequency of those genotypes. Let’s
calculate the fitness of our alleles using R.

first calculate the allele frequencies
define the total number of alleles

n <- 2*sum(a)

calculate p

p <- ((a["A1A1"] * 2) + a["Al1A2"])/n

calculate g

q<-1-p

now calculate the marginal fitness
wl <- (p*rel fit["A1A1"]) + (g*rel_fit["A1A2"])
w2 <- (p*rel fit["A1A2"]) + (g*rel_fit["A2A2"])

Note again that we are explicitly naming elements of the vector to make the mathematics here clearer to you.
However this can cause some annoying names to follow around your data. Take a look at w1 and w2 - you
should see they have genotype names. The code below is exactly the same as the code block above, but this
time with numerical indexes - once again you see there are mulptile ways to do things in R. The names still
hang about because we used them right from the start, so we also remove them here by assigning a NULL :

2/15

calculate the marginal fitness
wl <- (p*rel fit[1]) + (g*rel_fit[2])
w2 <- (p*rel_fit[2]) + (g*rel_fit[3])
strip names

names(wl) <- names(w2) <- NULL
names(p) <- names(q) <- NULL

Now that we have the basics in place in terms of calculating fitness, we can go on to create a one-locus model
of viability selection.

One-locus model of viability selection

When we talk about viability, we simply mean that individuals with different genotypes will vary in their
probability of survivng until they are able to reproduce. Variation in viability will therefore effect the ability of
individuals to reproduce and thus pass on their genes to the next generation. In other words, allele frequencies
will change as a result of selection.

To model this, we will use a locus A with alleles A; and A, - each with a frequency p and q. From the last
section, we have the relative fithess of the genotypes with w1, w9 and wsyy. For simplicity we will assume
that fitness remains constant and that the frequency of the zygotes at each generation are in line with the
Hardy-Weinberg expectation. Like in the book, we summarise the basics in the table below:

Genotype Zygote frequency Fitness
A1 Ay P2 W11
A A, 2pq W12
Ay Ay q W22

In our model, we will calculate p;, 1 the frequency of allele A, after a single generation of selection. This
depends on three things: p - the allele frequency before selection, w;*, the marginal fitness of the A, allele
and the difference between this and w, the mean population fitness. So our model is basicaly:

*
P, =
e e —
w
We will use our previous results to calculate how p changes after a round of selection:

p_t <- (p*wl)/w_bar

If you compare p and p_t, you will see how the frequency in p changed as a result of selection. In fact, this
is Ap. In R, we can easily calculate it as:

delta_p <- p_t - p

If everything worked correctly, your delta_p should be 0.0372093 .

Simulating selection under the one-locus model

So far, we have recreated the model for a single generation to try and understand how it works. But the beauty
of R is that we can easily change the parameters to see how this will vary the change in frequency of our
allele. The easiest way to do this is if we write a function that neatly summarises the code we have already
explored - then all we need to do to see how the parameters have an effect is simply alter the arguments we
give our function.

3/15

We will now write a function that takes the initial frequency of p and a vector consisting of the relative fitness of
each genotype. This function will then calculate the allele frequencies, the mean population fithess and the
marginal fitness of the alleles.

a simple function to demonstrate the one lLocus selection model
selection_model <- function(p, rel fit){

define g

q<-1-p

calculate genotype frequencies (under HWE)

gf <- c(p"2, 2*(p*q), q"2)

calculate mean pop fitness
w_bar <- sum(rel_ fit*gf)

calculate marginal allele frequencies
wl <- (p*rel_fit[1]) + (g*rel_fit[2])
w2 <- (p*rel fit[2]) + (gq*rel_fit[3])

calculate freq of p in the next generation
p_t <- (p*wl)/w_bar

return the results
return(p_t)

With this simple function, we can play around with the initial frequency of the A; allele and the relative fitness
of the 3 genotypes. Try a few different values for yourself to see.

keeping the initial frequency constant

selection_model(p = 0.5, rel fit = c(1, 1, 0.75))
selection_model(p = 0.5, rel fit = c(1, 1, 0.5))
selection_model(p = 0.5, rel fit = c(1, 1, 0.3))

To get a good idea of how the model works, what we really want to do is examine its change in frequency over
time. We can do this neatly using the vectorisation skills we learned in the last session
(https://evolutionarygenetics.github.io/Chapter3.html). We will initialise two values - the intial frequency p and
the number of generations we want to simulate selection for, n_gen .

first initialise the values
p <- p_init <- 0.5
n_gen <- 100

use sapply to repeatedly run the selection model

p_vec <- sapply(1:n_gen, function(y){
p_t <- selection_model(p = p, rel_fit = c(1, 1, 0.75))
p <<- p_t

)

combine the initial p and the values of p across each generation
p_vec <- c(p_init, p_vec)

So all we did here was wrap our selection_model functionin an sapply command. We also took a moment
to combine our initial value of p p_init to the the p_vec output. Note again that we used the <<- notation -
this simply tells R to repeatedly update the value of p within our function. Why do we need to do this? Well
you can run the following sapply wrapped version of selection_model to see.

4/15

first initialise the values
p <- 0.5
n_gen <- 100

use sapply to repeatedly run the selection model
sapply(1:n_gen, function(y){

selection_model(p = p, rel_fit = c(1, 1, 0.75))
)

There is no assignment in the above block of code (on purpose so you don’t write over your p_vec) but the
output makes it clear - all we did here was rerun the selection model 100 times. We need to update p or else
we are not properly simulating selection.

Visualising selection with different parameters.

We already know that R’s visualisation capabilities are extremely important for developing an understanding of
data and concepts. So let’'s combine our programming and visualisation skills to demonstrate how varying the
parameters really effect the outcome of our model.

First things first, we will take our vectorised simulation from the previous section and make it into it's own
function selection_sim.

make a simulator function

selection_sim <- function(p, rel_fit, n_gen){
initialise variables
p_init <- p
my _rel fit <- rel_fit

use sapply to repeatedly run the selection model
p_vec <- sapply(1l:n_gen, function(y){
p_t <- selection_model(p = p, rel fit = my_rel fit)
p <<- p_t
}

combine the initial p and the values of p across each generation
p_vec <- c(p_init, p_vec)

return the output
return(p_vec)

This is the same code, just wrapped in a function. The only thing you need to note here is that in order to
distinguish between the rel_fit arguments made to the selection_sim and selection_model functions, we
rename it as my_rel_fit within the function. This is a useful example of coding because here we have built a
more complex function using another simple one we wrote early - this is the principle of modular programming
(https://en.wikipedia.org/wiki/Modular_programming). It makes it much easier to diagnose issues as you can fix
the individual functions separately.

Anyway, now we can easily simulate selection over multiple generations. For example:

Test the selection simulator
selection_sim(p = 0.5, rel fit = c(1, 1, ©0.75), n_gen = 1000)

5/15

So, now we will perform 4 simulations for 200 generations, keeping our initial frequency of p at 0.5. However,
we will alter the relative fitness of the A5 A5 genotype from 0.2 to 0.8. We can also do this very easily with
vectorisation:

set the vector for the relative fitness of A2A2
A2A2 rf <- seq(from = 0.2, to = 0.8, by = 0.2)

run simulations for each
sel sims <- sapply(A2A2_rf, function(z){

selection_sim(p = 0.5, rel fit = c(1, 1, z), n_gen = 200)
)

assign names to the matrix
colnames(sel_sims) <- paste@("w22=", A2A2_rf)

Note that the last thing we did here was use pastee to create some column names for our matrix of selection
simulations. We used pastee to combine w22= with the value of relative fitness for the A, A5 genotype. This
will make sense in a moment when it is used in our plotting. Next up, we should get everything together in a
tibble and use gather to prepare for plotting.

create a generations vector
g <- seq(0, 200, 1)

combine together to make a tibble
sel sims <- as.tibble(cbind(g, sel _sims))

Warning: “as.tibble()’ is deprecated, use “as_tibble()" (but mind the new semantics).
This warning is displayed once per session.

use gather to rearrange for plotting
sel sims_g <- gather(sel_sims, key = "rel fit", value = "p", -g)

Just to make clear what we did here, we used gather to rearrange our tibble so that each value of g has a
row for the different values of rel_fit . This makes it very straightforward to plot the different allele frequency
changes over time using ggplot2 . Like so:

initialise plot

a <- ggplot(sel_sims_g, aes(g, p, colour = rel fit)) + geom_line()

a <- a + xlab("No. of generations") + ylab("p") + ylim(e, 1)

a + theme_light() + theme(legend.position = "bottom", legend.title = element_blank())

6/15

1.00 o — L

0.75 A

2 0.50

0.25 A

0.00 -

0 50 100 150 200
No. of generations

——w22=0.2 — w22=0.4 — w22=0.6 —w22=0.8

So you can see from this plot that as the difference between the marginal fitness of A; and the mean
population fitness w decreases, the proportional increase in allele frequency per generation slows down. More
plainly, we can see that when woq is 0.8, the increase in p per generation is slower than when wys is 0.2.

Getting more from our selection model function with lists

Let's take another look at our selection_model function.

keeping the initial frequency constant
selection_model(p = 0.5, rel fit = c(0.8, 1, 0.7))

You will recall that when we defined the code for this function, we actually calculated quite a lot of stuff inside it
- the frequency of the A, allele, the genotype frequencies, mean population fitness and marginal frequencies.
But the only thing we used return to write out was the frequency of p in the next generation.

What if we want to extend our function to give us everything we calculated? This will be very useful for the
upcoming sections where we will need all these parameters. However, we can’t just write them all out as a
vector; so to achieve this, we need to learn about a new R data structure - a list.

Lists are actually fairly straightforward. You can think of them as vectors which are able to store other vectors
or objects. They are important because they can store data of different types. So for example, we will create a
ist below that stores a character vector, a numerical vector and a logical vector.

create vectors

<- 1:10

<- c("Ripley", "Lambert", "Ash", "Kane")
<- c(TRUE, TRUE, FALSE, FALSE, FALSE)
create Llist

mylist <- list(a =a, b =b, c = ¢)

* 0 o o H

7115

One thing to note from the above code is that the vectors we stored as a, b and c are also all of different
lengths. Anyway, now we can look at our list. First of all, since we explicitly named each of our vectors, i.e.
a = a when we used the list function, we can access objects in the list by name.

access Llist objects
mylist$a
mylist$b
mylist$c

But we can also use numbered indices to do the same thing.

access list objects
mylist[1]
mylist[2]
mylist[3]

Strictly, because it’s a list we should really use double square brackets. Compare the following code with the
above.

access Llist objects
mylist[[1]]
mylist[[2]]
mylist[[3]]

Now what if we wanted to get the first element of the b in our list? We could do this several ways:
both of these are equivalent
mylist[[2]][1]

mylist$b[1]

The point here is that lists useful for storing information. So, let’s integrate one into our selection_model
function so we can get some of those calculations from out of it.

8/15

a simple function to demonstrate the one locus selection model
selection_model <- function(p, rel fit){

define q

q<-1-p

calculate genotype frequencies (under HWE)

gf <- c(p"2, 2*(p*q), q"2)

calculate mean pop fitness
w_bar <- sum(rel fit*gf)

calculate marginal allele frequencies
wl <- (p*rel fit[1]) + (g*rel_fit[2])
w2 <- (p*rel fit[2]) + (g*rel_fit[3])

calculate freq of p in the next generation
p_t <- (p*wl)/w_bar

make Llist for output
output <- list(p = p, q = q, geno_freq = gf, w_bar = w_bar,
wl=wl, w2 = w2, p_t=p_t)

return the results
return(output)

All we did here was combine some of the inner workings of our function into vectors (i.e. the marginal_fit
object) and put everything together in a list we called output . So let’s try our selection_model function once
more.

keeping the initial frequency constant
selection_model(p = 0.5, rel fit = c(0.8, 1, 0.7))

When we run the model this time, we get a list with lots of different outputs! All of which will be very useful in
the coming sections...

Can a rare mutant establish in a population?

To understand a selection model like the one we have just developed, it can be useful to see whether a rare
mutant is able to establish in a population where the alternative allele is nearly fixed. This is the basis of
invasion fitness analysis.

We can do this using a simple case where heterozygotes have a greater advantage than homozygotes. Using
our newly modified selection_model function, we can test this by setting our relative fitness to show a higher
relative fitness in heterozygotes and setting p to a high frequency, close to 1.

keeping the initial frequency constant
selection_model(p = ©.99, rel fit = c(0.7, 1, 0.8))

We see here that w_bar is around 0.7 - which we would expect given the frequency of A; (i.e p) and the
relative fitness. Invasion fitness of A, is equivalent to the marginal fitness for the allele - so 0.99 here - close to
1, the relative fitness for the A; A5 heterozygote.

When invasion fitness is greater than resident mean population fithess, the model is not at a stable equilibrium
as an allele can easily invade and increase in frequency. What would happen if the frequency of A5 was
almost fixed?

9/15

keeping the initial frequency constant
selection_model(p = 0.01, rel fit = c(0.7, 1, 0.8))

In this case, w_bar (the resident fitness) is higher than when the A, allele is fixed, however the marginal
fitness of the A; allele (the invasion fitness) is higher than this - so in this scenarion A, could easily invade
and increase in frequency too.

In order for the equilibrium to be stable with heterozygote advantage, the marginal fitness of the two alleles
should equal one another. We will return to this in a short while.

Directional selection

Earlier, we simulated selection in order to understand our model. This was an example of directional
selection. Now we are going to explore that in more detail - in particular, we want to see how genotypic fitness
can alter the outcome of selection. We can visualise this using an adaptive landscape. Here we will use a
simplified, 2D landscape - i.e. a plot of mean population fitness w against the allele frequency p.

With our newly updated selection_model , we can do this again but we need to first update the simulation
function to output the data in a more standard way. Copy and paste the code below to update your
selection_sim function.

selection_sim <- function(p, rel_fit, n_gen){
initialise variables
p_init <- p
my_rel fit <- rel_fit

use sapply to repeatedly run the selection model
sim <- sapply(1:n_gen, function(y){
out <- selection_model(p = p, rel_fit = my _rel fit)
p <<- out$p_t
return list
return(out)
}, simplify = FALSE)

use map data.frame to extract data we want
sim_data <- sim %>%
map_dfr(magrittr::extract, c('p', 'q', 'w_bar’',
'wl', 'w2', 'p_t'))

return the output
return(sim_data)

Just to give some insight about what is different here. Our selection_model function now outputs a list - so
sapply no longer produces a vector of p_t but rather a list of lists. This is quite a complicated structure but
using the map_dfr function from the purr package (part of the tidyverse), we can easily extract vectors of the
variables we are interested in. It is beyond the scope of this tutorial to explore this in too much detail but we will
return to it in a future session with some more advanced R tasks.

Whatever the case, if we rerun our selection_sim function, we get a nice tibble of the output. Like so:

keeping the initial frequency constant
selection_sim(p = 0.01, rel fit = c(0.7, 1, 0.8), 100)

10/15

To simplify our analyses, we will use three different scenarios. In each of them, we will start with a p of 0.01,
and we will simulate 50 generations. In all cases A1 A will have the highest relative fitness of 1 and A5 A,

the lowest of 0.2. The only thing we will vary is the relative fitness of the heterozygote A A,. Therefore we are

simulating three types of genotypic fitness:

« dominance (w3 = wi;)

wy; +w
« additive inheritance (wyy = %)

e recessive (W19 = Woyg)

set generations

n_gen <- 50

run simulations

dom <- selection_sim(p = ©.01, rel_ fit
add <- selection_sim(p = 0.01, rel fit
rec <- selection_sim(p = 0.01, rel fit

c(1, 1, 0.2), n_gen)
c(1, 0.6, 0.2), n_gen)
c(1, 0.2, 0.2), n_gen)

We’ll take a brief break from the tidyverse approach now and plot this in base R. This is just because we want
you to focus on what we are modelling, rather than reshaping the data too much. Also it's good to learn new
approaches for plotting!

intialise plot
plot(NULL, xlim = c(@, 1), ylim = c(o, 1),

xlab = "Frequency - p", ylab = "Mean pop fitness", las = 1)
add curves for each case
lines(domp, domw_bar, lwd

2, col = "blue")

lines(addp, addw_bar, lwd = 2, col = "red")
lines(recp, recw _bar, lwd = 2, col = "green")
14 =
0.8
1)
7
[46]
é 0.6
Q
[®]
o
S 04
[<F)
=
0.2
0.0 —
[| I I I [
0.0 0.2 04 0.6 0.8 1.0

Frequency - p

11/15

What does this show us? Well firstly, you might remember that this figure is more or less identical to Figure 4.2

in the main textbook. The blue line is our case of dominance - i.e. both A;A; and A; A, identical, higher
relative fitness compared to A5 As. In this case, the frequency of the A; allele quickly increases but slows
down as the allele reaches fixation - hence the plateau at higher values of p. The green curve shows the

recessive case. The increase in A7 is lower when p is low because then the new mutant genotype is more
likely to occur in heterozygotes. However as the frequency increases (i.e. p goes up), the mean population
fitness increases rapidly two. In contrast, the additive case - in red - is just a linear increase with frequency.

We can try looking at the results of these simulations in a slgithly different way - to see how the frequency of
A, alters over the 50 generations we simulated it for. Again we will use base R code to achieve this.

g <- seq(1, n_gen, 1)

intialise plot
plot(NULL, x1im = c(@, n_gen), ylim = c(@0, 1),

xlab = "Time (generations)", ylab = "Frequency - p", las = 1)
add curves for each case

lines(g, dom$p, lwd = 2, col = "blue")
lines(g, add$p, lwd = 2, col = "red")
lines(g, rec$p, lwd = 2, col = "green")
0.8
o
. 06
0
c
(3]
=
g 04
L
0.2
0.0
[| I I | [
0 10 20 30 40 50

Time (generations)

All of these curves are S-shaped to some extent - so the transition from high to low frequency is rapit but the
approach to fixation is much slower. The most marked difference is in the green line - the recessive case.
Here, it takes time for A; alleles to occur in A; A; homozygotes, so the new mutation remains at low
frequency for quite a number of generations.

Over and underdominance

12/15

Earlier on, we learned a bit about heterozygote advantage. This also referred to as overdominance - i.e. when
the fitness of the heterozygote is higher than either homozygyote. However, we also touched upon the fact that
this can only be stable in under certain conditions - i.e. w;* = wy*. We also learned that when p or ¢ were 0
(i.e. the population is fixed for either allele), these equilibria are unstable. So at what allele frequency is the
population in a stable equilibria?

Previously we simulated data but this time, we are going to run our selection model for a range of values of p
and see where mean population fitness, w is maximised. Then we’ll visualise it make it clearer to ourselves.
As with the book, we will set relative fitness as 0.2, 1 and 0.4 forthe A; A, A; A5 and A5 A5 genotypes.

set the range of p

p_range <- seq(9, 1, 0.01)

use sapply to fit the model for all values of p and create a list

estimates <- map(p_range, function(z) selection_model(p = z, rel fit = c(0.2, 1, 0.4)))
extract what we're interested in from the Llist

overdom <- map_dfr(estimates, magrittr::extract, c('p', 'w_bar'))

So with this short piece of R code, we first set the range of all values of p with seq, then we used the map
function to run our selection_model function on each value. Finally we used map_dfr to extract the vectors of
p and w_bar . Now we can visualise these to see the stable equilibrium.

initialise plot

<- ggplot(overdom, aes(p, w_bar)) + geom_line(colour = "blue", size = 1.5)
<- a + xlim(o@, 1) + ylim(e, 1)

<- a + xlab("Frequency of Al - p") + ylab("Mean population fitness")

+ theme_light()

0 o L o W

1.00

0.75-

0.50

Mean population fitness

0.25

0.00

0.00 0.25 0.50 0.75 1.00
Frequency of A1 -p

We can see mean population fitness is maximised at 0.42. This is the stable point on our 2D adaptive
landscape.

13/15

Underdominance is the opposite of overdominance - i.e. it is heterozygote disadvantage. In short, relative
fitness of the heterozygote is lower than either homozygote. Once again, we can visualise the stable
equilibrium for a model of overdominance using more or less exactly the same code as before. All we really
need to change is the relative fitness which we will set to 0.9, 0.3 and 1 for the A; A, A; A5 and Ay A,
genotypes.

First, we run the model over different values of p.

#

P_

#

set the range of p
range <- seq(e, 1, 0.01)
use sapply to fit the model for all values of p and create a list

estimates <- map(p_range, function(z) selection_model(p = z, rel fit = c(0.9, 0.3, 1)))

#

extract what we're interested in from the List

underdom <- map_dfr(estimates, magrittr::extract, c('p', 'w_bar"))

Then we plot it using ggplot2 !

0 U L o #®

Mean population fitness

initialise plot

<- ggplot(underdom, aes(p, w_bar)) + geom_line(colour = "blue", size = 1.5)
<- a + xlim(o@, 1) + ylim(e, 1)

<- a + xlab("Frequency of Al - p") + ylab("Mean population fitness")

+ theme_light()

1.00

0.75-

0.50

0.25

0.00

0.00 0.25 0.50 0.75 1.00
Frequency of A1 -p

Here we see a scenario where underdominance is at a stable equilibria at p = 0.53.

Study questions

For

study questions on this tutorial, download the chapter4_R_questions.R from Canvas or find it here

(https://evolutionarygenetics.github.io/chapter4 R_questions.R).

14/15

	4. Hafta
	4. Doğal seçilim teorisi
	Slayt Numarası 2
	Slayt Numarası 3
	Slayt Numarası 4
	Slayt Numarası 5
	Slayt Numarası 6
	Slayt Numarası 7
	Slayt Numarası 8
	Slayt Numarası 9
	4. Doğal seçilim teorisi

	4

