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# set up genotype counts
<- c(48, 28, 4) # americans
d <- c(e, 3, 77) # druze

QU

# get the number of people sampled (same for both)
n <- sum(a)

# calculate the frequency of the T allele - or p
# for americans

p_a <- ((a[1]*2) + a[2])/(2*n)

# for druze

p_d <- ((d[1]*2) + d[2])/(2*n)

# calculating the frequency of C (or q) is then trivial
gac<-1-p.a
gd<-1-pd

Next we can calculate the allele frequencies for the metapopulation - i.e. Americans of European descent and Druze considered as a single
population. This is as simple as taking the mean of the two allele frequencies.

# calculate total allele frequency
p_t <- (p_a + p_d)/2
qg_t<-1-p_t

With these allele frequencies calculated, we can very easily calculate expected heterozygosities - remember this is just 2pq.

# first calculate expected heterozygosity for the two populations
# americans

hs_a <- 2*p_a*q_a

# druze

hs_d <- 2*p_d*q_d

# then take the mean of this

hs <- (hs_a + hs_d)/2

# next calculate expected heterozygosity for the metapopulations
ht <- 2*p_t*q_t

With all the relevant expected heterozygosities in place, we are now ready to calculate Fgt which we can do like so:

# calculate fst
fst <- (ht - hs)/ht

If your calculations were correct, then you should have an Fgt estimate of 0.59 - this is very high for between two human populations. One way to
interpret the Fst value we have here is that 59% of genetic variance we observe differs between populations. Since population can explain such
a large difference in this case, we might expect selection to be responsible...

Writing a set of Fgt functions

The code in the previous section was useful to demonstrate how we can calculate Fgr, but it would be a lot of work to run through this every
single time we want estimate the statistic for a locus. This being R, we can of course easily create a function that will do all of the leg work for us!
We will take the code we wrote out in the last section and use it here to write two functions that we can use when we want to calculate Fg7. Note
that for simplicity, we will only write functions that work for two populations.

First, we will write a function called calc_af which will take genotype counts from two populations and calculate allele frequencies. The function
also allows for sample sizes to vary between the two populations.

# a simple function to calculate allele frequencies in two populations
calc_af <- function(popl, pop2){

# get the number of samples

n_1 <- sum(popl)

n_2 <- sum(pop2)

# calculate frequency of 1st allele - p

# for popl

p_1 <- ((popl[1]*2) + popl[2])/(2*n_1)

# for pop2

p_2 <- ((pop2[1]*2) + pop2[2])/(2*n_2)

return(c(p_1, p_2))

Since it is very straightforward for use to calculate the frequency of the second allele once we have the frequency of the first (i.e. ¢ = 1 — p), our
calc_af functon w Il only calculate p for both populat ons. Let’s test t on the data from our prev ous example.
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# testing our function on the american/druze example
afs <- calc_af(popl = c(48, 28, 4), pop2 = c(0, 3, 77))

So now that we have a function that calculates allele frequencies in the two populations, we can write our calc_fst function to take these
frequencies and calculate Fgt from them.

# a function to calculate fst
calc_fst <- function(p_1, p_2){

# calculate ql1 and q2
qgl<-1-p1
q2<-1-p.2

# calculate total allele frequency
p_t <- (p_1 + p_2)/2
gt < 1-p.t

# calculate expected heterozygosity

# first calculate expected heterozygosity for the two populations
# popl

hs_1 <- 2*p_1*q_1

# pop2

hs_2 <- 2*p_2*q_2

# then take the mean of this

hs <- (hs_1 + hs_2)/2

# next calculate expected heterozygosity for the metapopulations
ht <- 2*p_t*q_t

# calculate fst
fst <- (ht - hs)/ht

# return output
return(fst)

Let’s test our function on the allele frequencies we calculated with our calc_af function.

# testing our function on the american/druze example
calc_fst(afs[1], afs[2])

This should be the same as you got before, but with a lot less work. Next, we’ll look at applying a function to a bigger dataset.

Applying functions to matrices and data frames

Extending our LCT and lactase persistence example, let's get some data from multiple human populations. You can download the data here
(https://evolutionarygenetics.github.io/lct_count.tsv)

lct_counts <- read_delim("./lct_count.tsv", delim = "\t")

You should now have a tibble in your R environment with allele counts for the SNP rs4988235 for 53 populations. Again, these data are all from
Bersaglieri et al. 2002 (https://www.sciencedirect.com/science/article/pii/S0002929707628389).

What we have is the counts of allleles but what we actually want is the allele frequency for T - that is how we can calculate Fg7. However, as you
will recall, our calc_af function takes the input for TWO populations. Calculating frequencies is pretty straightforward so let’s simplify our
function - we will call it calc_af_simple.

calc_af_simple <- function(counts){
# get the number of samples
n <- sum(counts)
# calculate frequency of 1st allele - p
# for popl
p <- ((counts[1]*2) + counts[2])/(2*n)
return(p)

Let’s try this function out on counts for a single population. We use indexing here to select the first row and only columns 2:4, since our function
is only expecting the count data, not the population name.

calc_af_simple(lct_counts[1, 2:4])
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Great! So this works well. Now let’s get p (the frequency of the T allele) for all the populations. We can do this extremely fast and easily using
apply .

# we can write it this way
p <- select(lct_counts, -pop) %>% apply(1l, calc_af_simple)

# or this way
p <- apply(select(lct_counts, -pop), 1, calc_af_simple)

apply is a similar function to sapply , except it works on matrices or data.frames. All it takes three arguments - the object

(i.e. matrix/data.frame) which you want to apply it to, the index you apply it over and finally, the function you are applying. In the two examples of
how to write an apply command above, we first removed the pop command with select and we then used 1 to denote we are operating over
the rows of the data.frame. Finally we specify that for each row, we will use our calc_af_simple function.

We can now combine our vector of allele frequencies with the population names to create a data.frame of frequencies. Like so

lct_freq <- as.tibble(data.frame(pop = lct_counts$pop, p))

## Warning: “as.tibble() 1is deprecated, use “as_tibble()" (but mind the new semantics).
## This warning is displayed once per session.

Now we can easily calculate a pairwise Fst with our calc_fst function. For example, let’s calculate Fgt for European Americans and East
Asians. We will use dplyr commands for this. Recall that | means or.

# extract frequencies

afs <- filter(lct_freq, pop == "European_American" | pop == "East_Asian") %>% pull(p)
# calculate fst

calc_fst(afs[1], afs[2])

All the pull function does here is return our p column as a vector we can use in the calc_fst function. As with our previous example, we can
see F~~ST is actually pretty high between these populations for this SNP. What about if we compared East Asians with the Bedouin people from
Israel?

# extract frequencies

afs <- filter(lct_freq, pop == "East_Asian" | pop == "Bedouin_Negev_Israel") %>% pull(p)
# calculate fst

calc_fst(afs[1], afs[2])

Here we see Fgt is substantially lower. Allele frequency differences are lower between these populations.

Visualising Fg7 along a chromosome

Next, we will combine the skills we learned with apply and our custom functions to calculate Fgt for a series of SNPs in the vicinity of the LCT
gene on chromosome 2. This is essentially a genome scan, an approach that can be used to detect signatures of selection in the genome. You
can download the data here (https://evolutionarygenetics.github.io/LCT_snps.tsv)

First of all, we will read in the data:
lct_snps <- read_delim("./LCT_snps.tsv", delim = "\t")

This data is also from from Bersaglieri et al. 2002 (https://www.sciencedirect.com/science/article/pii/S0002929707628389). It is the allele
frequencyin various human populations for one allele at a set of 101 biallelic SNP markers close to the LCT gene on chromosome 2 in the human
gene. Each row is a SNP and there are three frequencies - one for North Americans of European descent, one for African Americans and one for
East Asians.

Since we have the allele frequencies, we can easily calculate Fgt for each of these SNPs. For our example here, we will do this between
european_americans and east_asians . First of all, let's use our calc_fst function on just a single SNP.
calc_fst(lct_snps[1, 4], lct_snps[1l, 6])

How can we scale this up calculate Fgt for all those loci rapidly? We can do this in a single line of code using a function called pmap .

# test the code

pmap_dbl(lct_snps, ~ calc_fst(..4, ..6))

# make an fst column

lct_snps$fst <- pmap_dbl(lct_snps, ~ calc_fst(..4, ..6))

What did we do here? Well pmap can be a tricky function to understand but in this example it is pretty straightforward. It takes 3 main arguments,
the first is our data.frame 1ct_snps, then we use ~ to denote we want to apply a function to the rows of this data.frame. Finally, we use our
calc_fst function but we use ..4 and ..6 to denote that we want to use the 4th and 6th columns respectively (i.e. North Americans of
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European descent and East Asians). If you wanted to choose the 5th column for example, you would use ..5.

Anyway, now that we have Fgt estimates for each of our SNPs, we can visualise the variation along the chromosome with ggplot2 .

a <- ggplot(lct_snps, aes(coord, fst)) + geom_point()
a <- a + xlab("Position (Mb)") + ylab(expression(italic(F)[ST]))
a <- a + theme_light()
a
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What are we seeing here? Quite clearly, there is a an increase in Fgt along the chromosome, with a few SNPs showing extremely high values. It
might make things a bit clearer if we mark on our plot the midpoint of the LCT gene. We know the gene occurs between 136,261,885 bp and
136,311,220 bp on Chromsome 2 (from the UCSC Genome Browser (https://genome.ucsc.edu/cgi-bin/hgTracks?
db=hg18&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=default&virtMode=0&nonVirtPosition=&position=chr2%3A136261885-
136311220&hgsid=690775201_Cttqx4oVutDVGra183ZtAUFm6z2W)). So first we will find the midpoint of the gene.

# define the start and stop positions of the gene
lct_start <- 136261885

lct_stop <- 136311220

# calculate the midpoint

lct_mid <- (lct_start + lct_stop)/2

All we need to do to add it to our plot is use the geom_vline function.

a <- a + geom_vline(xintercept = lct_mid, 1ty = 2, col = "blue")
a
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When the mid point of the gene is marked, it is clear that there is an increase in Fgt just upstream from the LCT gene. Perhaps we want to
highlight the SNP that we calculated Fgt for in our first example? We can do this easily by setting a factor in our original data.frame. Recall that

the original SNP is called rs4988235.

lct_snps <- lct_snps %>%
mutate(status = if_else(snp_id == "rs4988235", "Yes", "No"))

What did we do here? Well first we used the mutate function to create a new column. Inside mutate , we used if _else . This function allows us
to set a condition and print values based on whether that condition is met or not. So here we are basically saying, if snp_id == "rs4988235"
then return Yes , if not then return No . We named this column status . More on how we’ll use this in a moment but first we’'ll use a simple

example to demonstrate if _else again.

if_else(5 > 10, "Surprising"”, "Not surprising")

## [1] "Not surprising"

if_else(10 > 5, "Surprising", "Not surprising")

## [1] "Surprising"

Now to highlight the SNP on our plot. We do this by setting colour as a variable in our aes .

a <- ggplot(lct_snps, aes(coord, fst, colour = status)) + geom_point()
a <- a + xlab("Position (Mb)") + ylab(expression(italic(F)[ST]))

a <- a + geom_vline(xintercept = lct_mid, 1ty = 2, col = "blue")

a <- a + theme_light() + theme(legend.position = "none"

a
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Now we see, our focal SNP is highlighted in the plot. We'll change the colours to make it a little bit clearer.

a + scale_colour_manual(values = c("black", "red"))

1
! °
1

0.6- 1
1
1
1
1
)
]
1
1
1
1

0.4 I
1
1
1

5 1
w 1 .

1 [ ]
' °
1
1 (1N * . e

0.2 T T P -

. | e
1 . e
1
1 L ]
) i o *®
1
. ! - o‘ o *
1 ® L 0 [
[ ! o® [ ] L4

0o *° % e Meee®ed ‘e i-' U . u 2

1
1.35e+08 1.36e+08 1.37e+08 1.38e+08

Position (Mb)

In the next section, we’ll demonstrate how we can use the distribution of Fgt to identify outliers as potential targets of selection.

Distributions in R

A good understanding of statistical distributions is an important part of any evolutionary biologist’s toolkit. We have already encountered
statistical distributions before during these tutorials - when we used the binomial and chi-squared distributions. Today, we will focus on the
normal distribution which will be important for understanding how to detect Fgt outliers and also for understanding some of the topics that we
will encounter in the following tutorial.

As you might remember, R has a suite of functions that are based around statistical distributions. We will use one of these - rnorm - to generate
a random draw of 100 values from the normal distribution.

rnorm(n = 100, mean = 1, sd = 0.25)
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What did we do here? First we told rnorm we want 100 values -i.e. n = 100 . We are going to draw them from a distribution with a mean of 1

and a standard deviation of 0.25. Remember, rnorm stands for random sample of the normal distribution - so values will differ each time you run

this function.

Let’s do this again, but this time we will visualise the distribution using a histogram.

X <- rnorm(n = 100, mean = 1, sd = 0.25)
hist(x, breaks = 10)

Histogram of x
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You should already be familiar with the normal distribution, but if not then visualising it might help your understanding. The majority of
observations occur at the mean (i.e. the peak in our histogram), whereas the extremes of the distribution represent outliers.

In order to identify something as an outlier, we need to identify an arbitrary threshold, above which we consider something an extreme of the
distribution. So for example, we could say that the top 5% of values in our distribution are potentially outliers. This means we need to set the
percentile or quantile threshold of our distribution to 0.95. We can do this like so

quantile(x, 0.95)

So this means that if a value is greater than about 1.31, we can consider it in the top 5% of our data distribution - and thus a potential outlier.
(Note, you might get a slightly different answer to this because we used a random sample from the distribution)

Let’s visualise this on our distribution to make it a bit clearer what it means:

hist(x, breaks = 10)
abline(v = quantile(x, ©.95), 1ty = 2, lwd = 3, col = "red")
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Histogram of x
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In other words, the red line here shows that this is our threshold, above which we consider values a potential outlier.

|dentifying outliers in our Fgt distribution

So how can we apply what we just learned about outliers to our Fgt data? First of all, we might reasonably ask, is the data normally distributed?
Let’s plot it and see.

ggplot(lct_snps, aes(fst)) + geom_histogram(binwidth = ©.05)

30-

0.0 0.2 0.4 0.6
fst

Well, obviously it's not quite as nicely distributed as our simulated data was, but we can still use this to identify which values of Fgt might be
considered potential outliers.

We'll set our threshold at 5% again and identify where on our distribution that falls. Note that this time we need to add na.rm = T to our
quantile function in order to ignore some loci which have no Fgt estimates.

911



# set threshold

threshold <- quantile(lct_snps$fst, ©.95, na.rm = T)

# plot histogram with threshold marked

a <- ggplot(lct_snps, aes(fst)) + geom_histogram(binwidth = ©.@5)

a + geom_vline(xintercept = threshold, colour = "red", 1ty = 2, size = 1)

30 -

count

0.0 0.2 0.4 0.6
fst

Now what if we want to visualise this on our chromosome-wide plot? Once again, we need to use the mutate and if_else functions.

lct_snps <- lct_snps %>%
mutate(outlier = if_else(fst > threshold, "Outlier", "Non-outlier"))

Take a look at the 1ct_snps tibble - you should now see an additional column which is a character vector with the status of each locus as either
outlier or non-outlier. Next we can incorporate this into our plotting:

<- ggplot(lct_snps, aes(coord, fst, colour = outlier)) + geom_point()
<- a + xlab("Position (Mb)") + ylab(expression(italic(F)[ST]))

<- a + geom_vline(xintercept = lct_mid, 1ty = 2, col = "blue")

<- a + theme_light() + theme(legend.position = "bottom")

FA VI DI DR < N O ]
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outlier ® Non-outier ® Outlier ® NA

So now our potential outlier SNPs are marked on the figure. There are only 5 of them but they all occur just upstream from the LCT locus.

We cannot say for certain that these SNPs have increased Fgt values because of selection - other processes such as genetic drift or
demographic history (i.e. a bottleneck in one of the two populations) might be responsible. However, given our knowledge that LCT is involved in
lactase persistence, we can at least hypothesise that this is the case.

One important point to note here is that the threshold we set to identify a SNP as being potentially under seelction is entirely arbitrary. In a way
this line of thinking forces us to think of selection acting in some binary way on some SNPs and not others. This is obviously not the case. Still,
for SNP data like this an Fgt scan can be a very useful tool.

Study questions

For study questions on this tutorial, download the Chapter5_R_questions.R from Canvas or find it here
(https://evolutionarygenetics.github.io/Chapter5_R_questions.R).

Going further

» Graham Coop’s notes on F statistics (http://cooplab.github.io/popgen-notes/#summarizing-population-structure)

» A detailed tutorial on calculating population differentiation with several R-based population genetic packages
(https://popgen.nescent.org/2015-12-15-microsatellite-differentiation.html)

» A nice, thorough exploration of the normal distribution using R functions and plotting (http://seankross.com/notes/dpqr/)
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