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Fisher (https://en.wikipedia.org/wiki/Ronald_Fisher) who was part of the modern synthesis
(https://en.wikipedia.org/wiki/Modern_synthesis_(20th_century)) of population genetics and evolutionary
theory.

The iris dataset

To get an understanding of how we apply an ANOVA, we will first use the iris dataset, which comes as part
of the R distribution. You actually encountered this dataset for the first time back in the first R session
(https://evolutionarygenetics.github.io/Introduction.html). We’ll make it a tibble so it is easier to visualise.

iris <- as.tibble(iris)

## Warning: “as.tibble()" is deprecated, use “as_tibble()" (but mind the new semantics).
## This warning is displayed once per session.

Take a look at the iris dataset now. You can learn more about it with ?iris . The dataset is actually a fitting
one to describe the use of ANOVA in biology as it is one that Fisher often used to test his statistical models.

Anyway, what does iris contain? Well it is a set of various morphological measurements from 3 species of
flowers. There are actually four measurements from 50 of each iris species. We can verify this using some
tidyverse commands.

iris %>% group_by(Species) %>% tally()
Just to recap here - we used group_by to group the dataset by the Species column and then tally to count

the number of rows.

Take one more look at the iris dataset to note that the tibble contains the four measurements
( Sepal.Length, Sepal.Width, Petal.Length and Petal.Width ) and also a fifth column, "Species which
unsurprisingly lets us know the species.

Examining trait differences between groups.

As we’re aware of by now, one of the strengths of R is its ability to visualize data. It really is a good idea to
always do this before you perform a statistical test, just to get an idea of what the data is showing.

We are eventually going to use an ANOVA to test whether there is a difference between petal length between
the species. But first let’s plot this to get some intuition on what such a test will actually show. We will use
geom_boxplot to make a boxplot.

ggplot(iris, aes(Species, Petal.Length, fill = Species)) + geom_boxplot()
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Boxplots are quite useful in this case since they show the distribution of the data. You can see from the one we
drew here that distributions of the three species are clearly different with respect to their petal length. The black
bars in each of our boxplots are the median values of the measurement for each group - so again these are
obviously different.

Before we turn to actually testing whether these differences are significant from one another, let's get some
confirmatiion on the actual mean values of petal length for the three species. We can do this using a
tidyverse approach.

iris %>% group_by(Species) %>%
summarise(mean_petal_ length = mean(Petal.LlLength))

This is very similar to what we did previously, we grouped our data by species using group_by but this time,
instead of using tally, we used summarise to calculate the mean Petal.Length for each group. Note that
the mean_petal_length part of the argument to summarise is just to specify the name of the column in the
output. Clearly we can see that the mean values of these traits are different between the species.

Using ANOVA to test for differences between groups

Now that we can see there appears to be some difference between species in petal length based on our
boxplots, we can actually formally test this. As we learned earlier, ANOVA is essentially a way to test whether
the means of different groups are equal. We are testing whether the means of a dependent variable, petal
length in this case, differs with our independent variable, which is species here.

To conduct an ANOVA in R, we will use the function aov like so to create an object we will call model .

model <- aov(Petal.Length ~ Species, data = iris)

What did we do? Let’s break it down a little. The aov function just means we specified an analysis of variance.
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We then used a formula as our first argument Petal.Length ~ Species . This is essentially like saying, “How

does petal length vary with species”? A little confusingly in R, the dependent variable comes first and then the
dependent variable. This part of our argument to aov specifies what we are actually testing. Finally we used

data = iris to specify that we are using the iris data for this calculation.

Next we can examine the output of our model, to get an understanding of what it shows. To do this, we need to
use a special function, summary :

summary (model)

By using summary , we return an ANOVA table. This can be a little confusing the first time you look at one, but
it is actually quite straightforward. The first row of the table is for Species . The two last values in this row are
an F statistic and a p-value. We will return to what the F statistic actually means in a short while.

Let’s focus instead on the p-value. This is essentially a way of determining whether the results we see could be
explained by chance. It is a test of significance - we did something similar with the Chi-squared test back in
Chapter 3 (https://evolutionarygenetics.github.io/Chapter3.html). In the biological sciences, we have an
arbitrary cutoff for a p-value, set at 0.05. If our p-value is lower than this, then we can say that our dependent
variable is significantly different among the groups.

Here we can cleary see that our p-value is actually extremely small - less than 2 x 10716 which tells us that
petal length is signficiantly different between species. The asterisks after the p value are also there to tell us
this - *** simply means that our p-value is close to zero.

ANOVA and the proportion of variance explained

So far, we have learned about ANOVA in it's simplest form - i.e. to test for differences among means. But this
is not the only way we can think about it and the clue is in the name - it analyses variance. What do we mean
by this? To illustrate it, let's have a look at the total distribution of Petal.Length fromthe iris data. We can
do this using a histogram.

ggplot(iris, aes(Petal.Length)) + geom_histogram()
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So, this time we are visualising petal length for all species grouped as one. Imagine for a moment you didn’t
know that we have three species in our dataset. It is pretty obvious from this plot that there is a lot variation in
petal length - there appear to be at least two and maybe three peaks in the data.

What might explain why there is so much variation? Well of course, we know there are actually three species
included in these measurements. So, if we split our dataset into different species, can that explain the
variance we observe? This is another way to think of ANOVA - as way of measuring the variance explained
by how we split up the dataset.

So this brings us back to the F statistic. It is essentially a ratio of the variance explained by our grouping to the
variance that occurs within each of them. One way to think of this is that the higher the value of F, the more
likely our grouping explains a significant proportion of the variance in our data.

What if we want to actually measure how much variance our grouping (species here) actually explains_
Luckily, this is very straightforward. We can look at a slightly different output from the model object we created
earlier.

summary.lm(model)

There is a lot of information here! However, you should focus on the last two lines of the output. On the very
last line, you will see the F statistic and p-value from when we called summary(model) . Above that are two
values of another statistic called the R-squared or R2. Focus on the adjusted R2.

Our adjusted R? is 0.94 which essentially means that by grouping our data by species, we explain 94% of the
variance in petal length. So clearly, species has a very important role in explaining the morphological
differences in our data. One biological explanation for this is that genetic basis for petal length might be
different between the species. We will see in the next section how we can apply a more advanced version of
ANOVA to actually determine the genetic basis of a trait.
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Performing a QTL analysis in bedbugs

Bedbugs, pesticide resistance and study design

We are going to use the qtl package in R to perform a basic QTL analysis on pesticide resistance on an F2
intercross in bedbugs, Cimex lectularius. Note that all the data we use here come from Fountain et al (2016)
(http://www.g3journal.org/content/6/12/4059).

Bed bugs are an human ectoparasite that have experienced a population boom in the last two decades. They
are nasty things, so a lot of research has focused on using pesticides to control them. However, some bedbug
populations have evolved pesticide resistance, particularly to the most commonly used pyrethroid insecticide.

In their study, Fountain et al crossed two strains of bedbugs. one resistant to the pesticide and the other
susceptible. Using a resistant female and susceptible male, they created an F1 generation and then crossed
two randomly selected F1 offspring, ultimately producing 90 F2 individuals. They then exposed the F2s to
pytheroid insecticide and scored their resistance to it. The pesticide disrupts motor function, so F2s were
scored either as susceptible (unable to right themselves if turned over), partially resistant (able to right
themselves but walk with some difficulty) and resistant (walk normally, no apparent effect on motor control).

The two grandparents, the two F1 parents and the 90 F2s were then genotyped using RAD-sequencing. RAD-
sequences were mapped to a draft bedbug genome and then SNPs were called from 12 962 RAD tags. During
their analysis, the authors discarded some individuals and markers so the dataset we are working is a subset
of the original data.

Reading in the bedbug data

First we need to download the data, which is here
(https://evolutionarygenetics.github.io/bedbugs_cross_data.csv)

Since we loaded the qtl package at the start of the tutorial, we can now easily read in the data using the
following command.

bedbugs <- read.cross(format = "csv", dir = "",
file = "./bedbugs_cross_data.csv",
genotypes = c("AA", "AB", "BB"),
estimate.map = FALSE)

When you run this command, you will see that we read in the data from 71 individuals and 334 markers.
Strangely, there are only two phenotypes here. This isn’t right, there should be three, so we will need to correct
this later.

Let’s break down what we did here - we used qtl’s read.cross function to read in our cross data. We
specified the format as a comma-separated variable file, we specified the directory the data is in (left blank
here because it is in the same directory we are working in) and also the path to the file.

We also specified how our genotypes are encoded using the genotypes argument and importantly, we
specified estimate.map = FALSE to ensure that we are only reading in the data and not creating a linkage map
at this stage. It is worth noting at this point that qt1 is an extremely powerful and complex package with a lot
of options and functions. At the end of the tutorial, we will point you towards other resources that can help you
learn more about it, but for now we can ignore these options. However if you are interested in learning a little
more, you can learn more about these arguments by looking at the help like so: ?read.cross .

One last point, try typing in bedbugs to see what you get in the R console. You'll see a lot of summary
information on the cross object we created when we red in the data. Again, it says there are only 2
phenotypes...
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Correcting the phenotypes

So, we need to correct the phenotypes? Let’s first take a look at what is stored so far.

# Look at the phenotypes
bedbugs$pheno

Aha, the reason R says there are 2 phenotypes is because there are two columns in the phenotype data.frame
-one called id and the other called res . This second vairable is the resistance (i.e. S = susceptible, PR =
partially resistant and R = resistant). So we can easily assign this as an environmental variable for now.

# Assign resistance as an environmental variable
res <- bedbugs$pheno$res

Incidentally, how did we know to use $pheno to access the phenotypic data? Using the objects function on
the bedbugs object -i.e. objects(bedbugs) will give us a rundown of what we can access inside.

Exploring the data

Now our data is read into the R environment and we have everything setup, a good first start is to get an idea
of what is going on with our data. We have learned already how good it is to plot data, and luckily for us, qtl
has a number of functions to make this straightforward. Let’'s use the plotMissing function

plotMissing(bedbugs)
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Let’s break this plot down. Since this data is the finalised data from Fountain et al, we already have 14 linkage
groups assembled - hence the 14 vertical ‘blocks’ across the plot. When there is a black tile, we have missing
data - and the markers are plotted along the x-axis.
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It takes a bit of practice to get used to reading these sort of plots, but essentially you can see that there are
several individuals which are lacking genotypes across multiple markers.

Examining the linkage map

Now we have explored the data, our next step is to actually look at the linkage map. A linkage map is the
position of markers in the genome in terms of their recombination distance from one another - i.e. how many
recombination events occur between them. Lets take a look at a summary of the linkage map. Note that
sometimes, a linkage map is also referred to as a genetic map.

# examing the bedbug Linkage map
summaryMap (bedbugs)

This returns a data.frame where each row is a linkage group and the four columns are: n.mar - the number
of markers length - the length of the linkage group in centimorgans (see below) ave.spacing - the average
spacing between markers (in centimorgans) max.spacing - the maximum spacing between markers (in
centimorgans)

We can see that that the 334 markers are spread across 14 linkage groups. Spacing of markers here is shown
in centimorgans and the total length of the linkage map is 407 cM. Recall that a single centimorgan
represents the probability that of 0.01 that a recombination event in one generation. Alternatively you could
think of it as one recombination event every 100 generations.

Next we can take a look at the linkage map itself.

plotMap(bedbugs, show.marker.names = FALSE, main = "Bedbug linkage map")
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This is a visualisation of the data from the summary table - i.e. it is the spacing and distribution of markers.
There are 14 groups and we see the markers laid out on each of them. The further apart the markers are, the
greater the probability that there will be a recombination event between them.

Performing a QTL analysis

With the linkage map in place, we can now attempt to actually map out pesticide resistance. Let’s take a look
at the distribution of phenotypes.

# make a data.frame of the phenotype data
pheno <- as.tibble(data.frame(res))
ggplot(pheno, aes(res)) + geom_bar() + theme_light()
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You can see from this that majority of the F2 generation were susceptible to pyrethroid and that only a small
number were partially resistant. When we perform a QTL mapping experiment, we are essentially looking for
the genome region that can describe the greatest percentage of the variance in this phenotypic distribution.

Before beginning mapping, we need to perform one quick fiddle with our code. qtl requires that the

phenotype is encoded as a number, so we use the following command to change our resistance coding to
numbers.

# convert to numeric data
bedbugs$pheno$res <- as.numeric(res)
# examine the results
bedbugs$pheno$res

We’'re now good to go! To perform the analysis, we will use the scanone function like so:
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bedbugs_scan <- scanone(bedbugs, pheno.col = 2)

You might see a warning here, but don’t worry too much about that since we are only looking at a simple
example. So what exactly have we just done? Using the scanone function, we ran a QTL analysis across the
entire set of markers and looked for an association between the genotypes at a marker and the phenotype.
This is more or less an ANOVA, but we will return to that shortly. For now, let’s take a closer look at the results:

summary(bedbugs_scan, threshold = 3)
Calling summary on the scan object shows us a single marker on linkage group 12 (referred to a chromsome

here) at 21.9 cM may be a QTL. It also returns something called a lod - this is a LOD score and for this
marker it is 6.84.

Let’s plot the LOD distribution to get a better idea of what is going on.

plot(bedbugs_scan, col = "red")
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You can see quite clearly that whaterver the LOD is, it is much higher on linkage group 12 and this peak
focuses right where our marker is. This suggests a strong association between genotypes here and the
phenotype in question.

What do we mean by a LOD score? It is beyond the scope of the tutorial to go in to too much detail about
this, but LOD stands for logarithim of the odds ratio. It is essentially the ratio between a model where a QTL
exists at a marker and one where there is no QTL at all. So, if a LOD is 0 or close to 0, then there is essentially
no evidence a QLT is present. However, if a QTL is present and explains variance in the phenotype then the
LOD score is expected to be higher, as it is at this marker.
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Linking ANOVA to our QTL analysis

Now that we have performed a QTL analysis and learned about ANOVA, we will try to bring the two together to
demonstrate how they are closely related... as well as demonstrating the importance of statistics in
evolutionary genetics!

Exploring the phenotype-genotype association

Remember earlier we learned that it is important to always visualise your data? This is true for QTL analysis
too! We can do this quite esily using a function called plotPXG from qtl -i.e. where PXG stands for
phenotype times genotype.

pheno_geno <- plotPXG(bedbugs, pheno.col = 2, "r449 NW_014465016")
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Note that all we did here is specify the dataset bedbugs , the column the phenotype is in and the name of the
marker we are interested in. However, not that this plot is slightly misleading because remember our
phenotypic data is scored numerically (1 = partially resistant, 2 = resistant, 3 = susceptible). This plot is also
based on the assumption the resistance trait we mapped is continous (instead of categorical) so it plots the
trait means (coloured crosses).

A better way to summarise the data is to see it in a table. The following code looks complex but all it does is
get the information the way we need it to be.
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# pheno - 1 is partially resistant, 2 is resistant, 3 1is susceptible

phenotype <- factor(pheno_geno$pheno, labels = c("partial resistance", "resistant", "suscepti
ble"))

# geno - 1 is AA, 2 is AB, 3 1is BB

gtl_marker <- factor(pheno_geno$r449 NW_014465016, labels = c("AA", "AB", "BB"))

# make into a tibble

qtl_df <- as.tibble(data.frame(phenotype, qtl_marker))

All we did here is extract the phenotype information and also the marker information for the QTL and used the

function factor to turntheminto factor variables - where there is a label for each category of the data (see
here for a reminder of what a factor is (https://evolutionarygenetics.github.io/Introduction.html)). We then made
everything into a tibble for later.

So we want to make a table where we can see the numbers of each resistance phenotype for each genotype.

That’s very easy!

# summary table
table(qtl_df)

It is fairly clear from this table and the figure if a bedbug has an A allele at this locus, it is more likely to be
susceptible to the pesticide. In contrast, most BB individuals are resistant.

Testing the same genotype phenotype association
with ANOVA

Last but not least. We can test the same association with ANOVA. To do this, we are going to read in some
data we prepared for you earlier (https://evolutionarygenetics.github.io/qtl_df.tsv).

qtl df2 <- as.tibble(read.delim("./qtl_df.tsv"))
Feel free to take a look at this - it is essentially the same data as before, but this time there is also the

genotype data for a marker which is not a QTL.

Let's use ANOVA to test whether variation in genotype can explain the variation in phenotype.
modell <- aov(as.numeric(phenotype) ~ qtl_marker, data = qtl_df2)

This is exactly same as the ANOVA we ran earlier with one exception. Like with scanone when we did our
QTL analysis, aov requires that the phenotype data is stored as a numeric . So to deal with this we need to
add the as.numeric function.

Finally, let's call summary on our model output to see whether there is a significant effect of the QTL marker on
our phenotype.

summary (modell)

Quite clearly there is a significant difference between genotypes at this marker in terms of phenotype. What
about at the non-qtl marker data we read in alongside this? Well for that, you can see the study questions...

Study questions

For study questions on this tutorial, download the Chapteré_R_questions.R from Canvas or find it here
(https://evolutionarygenetics.github.io/Chapter6_R_questions.R).

12/13



	7. Hafta
	6. Çoklu lokus evrimi

	7

