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Working with DNA sequence data

For the first part of the tutorial, we learn about how to handle DNA sequence data in R. To keep things simple
at this stage, we will use a relatively small dataset. Once we have some familiarity with sequence data and the
statistics we can calculate from it, we will learn how to handle data derived from whole genome sequencing.
For much of this first part of the tutorial, we will use a series of functions in ape and also some from pegas .

Reading sequence data into R.

The first thing we will learn to do today is to read segeunce data into R. Unlike in the previous tutorials, it
doesn’t make much sense to store sequence data as a data.frame , so we need to use functions specifically
designed for the purpose such as read.dna . We will be reading in a FASTA which is a standard file format for
sequencing data (https://en.wikipedia.org/wiki/FASTA format). FASTA files can vary slightly, but the basic
format is the same. The file we will use today can be downloaded here
(https://evolutionarygenetics.github.io/example.fas).

Before we actually read this file into R, let’s take a look at it:
file.show("example.fas")

The file.show function is quite self-explanatory. You can also click on the FASTA in the Files panein R
Studio and have a look at it in the console. In this FASTA file, there are two lines for each sequence - the
sequence name and then the sequence itself. The sequence name line starts with > and then after it are the
base calls. Again, it is worth checking out the wikipedia page for FASTA
(https://en.wikipedia.org/wiki/FASTA_format) as it contains more information on how these files are formatted.

Next we will actually read our FASTA file in. To do this, we will use read.dna like so:
mydna <- read.dna("example.fas", format = "fasta")

This will create an object, mydna which is an ape specific structure called a DNAbin -i.e. DNA data stored in
binary. You don’t need to worry too much about the specifics of this data structure although you might want to
check it for yourself. Try class(mydna) and ?DNAbin to get more information.

In the meantime, have a look at the mydna object and see what information is printed to the R console.

Exploring DNA sequence data

As you will have just seen, when you call the mydna object, you only get a summary in the R console. What if
you actually want to look at the sequences? One way to do this is to use the as.alignment function - like so:

myalign <- as.alignment(mydna)

This function simply converts our DNAbin object into an alignment - which is essentially a list with different
elements -i.e nb - the number of sequences, seq - the actual sequences themselves, nam - the names of
the sequences.

You can look at the sequences as a character vector using the following R code:
myalign$seq

But this is not really that useful, other than showing you a way of looking at the sequences. Furthermore, since
the DNA sequence is no longer stored in a binary manner - i.e. as a DNAbin , this is a very clunky method of
looking at your sequences. A better method is to use the alview function - like so:
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alview(mydna)

Note that in this case, we used alview directly on our mydna object - not on the myalign alignment object.
This prints our alignment to the screen and it makes it immediately obvious where there are nucleotide
polymorphisms in our data. You should note however that the N bases in the first sequence are bases which
could not be called by the sequencing machine - they are not valid base calls.

NOTE it is important that we make clarify what we mean by alignment here. In this case, these sequences
were read into R as an alignment already - meaning that each position in the sequences corresponds to one
another. We did not actually align the sequences in R itself.

Calculating basic sequence statistics
Base composition

Using a couple of standard pegas functions, we can get some more information about our sequences. For
example, we can calculate the frequency of the four nucleotides in our dataset:

base.freq(mydna)

We can also calculate the GC content - i.e. the proportion of the sequence that is either a G or C nucleotide.
GC.content(mydna)

To break down GC content even further, this is equivalent to:
sum(base.freq(mydna)[c(2, 3)])

Segregating sites

Looking at our aligned sequences, we can see that there are several positions whether there is a
polymorphism. Using the seg.sites function, we can actually count:

seg.sites(mydna)

seg.sites returns the position in the sequence where polymorphisms occur. So these are essentially the

indices of polymorphsims in our 40 base pair sequence alignment. There are just a few here, so you can easily

count them but if there were many, you might want to wrap this command with the length function to get the
actual number -i.e. length(seg.sites(mydna)) .

As this function makes pretty clear, segregating sites is just the number of polymorphic positions in a
sequence. However, it is also something that scales with sample size - i.e. the more sequences we add, the
higher the probability of finding segregating sites in our data. This is a point we will return to later.

One last thing about the segrating sites we calculated here - it is not standardised to the length of sequences.
To achieve that we need to do the following.

get segregating sites

<- length(seg.sites(mydna))

set sequence length

<- 40

standardise segregating sites by sequence length
<- S/L

w R H 0 H

Nucleotide diversity
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Nucleotide diversity or II is quite a straightforward statistic - it is simply the average number of differences
between sequences in a population or sample. We can calculate it using the following formula:

U= e /2ZH”

1<)

Where IL;; is the number of nucleotide differences between sequence % and sequence j and [n(n — 1)]/2 is
the number of possible pairwise sequence comparisons from all n sequences. This seems a little tricky but it is
actually very simple.

From seg.sites(mydna) , we know there are two polymorphic positions at sites 35 and 36 in our 40 bp
alignment. Using alview(mydna) we can visualise these and also actually count the differences. There are 2
nucleotide differences between sequences No3e5 and No3e4 , 1 between 304 and 306 and then finally, 1
again between 305 and 306 .

We can use R to calculate our nucleotide diversity by hand:

# set n sequences

n<- 3

# set differences

Pi_ij <- c(2, 1, 1)

# calculate the number of pairwise comparisons
np <- (n*(n-1))/2

# calculate the nucleotide diversity

Pi <- sum(Pi_ij)/np

You can compare this to the calculations in Chapter 7 of the textbook - as they are essentially identical. So
what we have here is the average number of nucleotide differences between our three sequences. This is not
standardised to the sequence length, so we need to do that next.

# calculate standarised nucleotide diversity
L <- 40
pi <- Pi/L

Of course, calculating nucleotide diversity by hand is not that useful when we have more than even a few
sequences (as we will shortly) Luckily. we can also calculate nucleotide diversity using the function nuc.div
from pegas .

nuc.div(mydna)

Unlike the number of segregating sites, this estimate is already standardised to the length of our sequence.
Take a moment to compare the output previous command with our hand calculated value of pi . They are
different! Why is this? Well using alview again we can see that there are actually two sites where in the first
sequence, No305 , the base call is N . As we learned earlier, this means we do not have a reliable call for this
position in the sequence (perhaps a sequencing error or an ambigous base).

The nuc.div function therefore corrects for these missing bases and shortens the total length of our sequence
by two. This therefore changes the final estimate of 7 it produces.

Working with a larger dataset

As we have seen in previous tutorials, R packages often come with nice, ready-to-use datasets. ape and
pegas are no exception. We will turn to the woodmouse dataset next to learn how we can work with larger data
than just 3, 40 bp sequences. To load the data, you need to do the following:
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data(woodmouse)
woodmouse

What is this data? It is 15 sequences the mitochondrial cytochrome b gene of the woodmouse (Apodemus
sylvaticus), a very cute and widespread rodent in Europe (https://en.wikipedia.org/wiki/Wood_mouse). The
data is a subset of a study (https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-294X.2003.01752.x) by the
authors of pegas .

We can easily view the woodmouse sequences using alview .
alview(woodmouse)

However, you can see already that with this much data, looking at the alignment directly is not that practical -
and we certainly wouldn’t ask you to count all the polymorphic sites here! Instead it makes much more sense
to use the R functions we just covered to calculate the statistics of interest.

With a larger dataset, we can also manipulate our woodmouse DNAbin object a bit more directly. Although we
do not see a matrix of aligned DNA sequences when we call woodmouse , we can still treat it like one - including
using R indices. In this sense, the rows of our matrix are our individuals and the columns are the number of
base pairs in our sequence. So for example:

woodmouse[1:10, ]

This command will return only the first 10 sequences. Manipulating the columns will also change how much of
the sequence we retain:

woodmouse[, 1:100]

In the next section, we will use this to demonstrate how sample size can influence our estimates of nucleotide
diversity and segregating sites.

Sample size and sequence statistics

First of all, let’s turn our attention to the number of segregating sites. How does using different numbers of
sequences effect this? We can use sapply here to loop through different values of the maximum number of
sequences. So we will first use 2 sequences, then 3, then 4 and so on, until we use all 15.

# use sapply to Loop

ss <- sapply(2:15, function(z){
length(seg.sites(woodmouse[1l:z, ]))

)

With our sapply code, we setthe function(z) argument, meaning that each value of 2, 3, 4 upto 15 is
denoted by z . Then within the curly brackets we simply calculate the number of segregating sites each time.
Have a look at the ss vector this creates - it is the number of segregating sites for each maximu number of
sequences. However, the relationship is a lot easier if we plot it, like so:

# plot figure
plot(2:15, ss, col = "red", xlab = "No of sequences"”, ylab = "Segregating sites", las = 1)
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It should be immediately obvious from this figure that the number of segregating sites is biased by the number
of sequences we include in the data. It increases our probability of observing a polymorphism and also since
all polymorphisms are given equal weighting in the calculation of the number of segregating sites, any
polymorphism will increase the value by 1.

So what do we see if we repeat the same code, but this time for nucleotide diversity or ?

# use sapply to Lloop
nd <- sapply(2:15, function(z){
nuc.div(woodmouse[1l:z, ])

1}

Again, our sapply function is the same as above, except this time we use the nuc.div function within the
curly brackets instead. We can also plot the relationship here:

# plot figure
plot(2:15, nd, col = "blue", xlab = "No of sequences"”, ylab = expression(pi), las = 1)
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There is no obvious relationship here - nucleotide diversity is an estimate of the average difference among
sequences so it only becomes more precise with increased numbers of sequences - it is not so easily biased.
Unlike segregating sites, polymorphisms are also not equally weighted; rare polymorphisms only contribute
slightly to nucleotide diversity as most sequences will be similar at this position, whereas more common
polymorphisms mean most sequences will differ at a position.

Inferring evolutionary processes using Tajima’s D

The number of segregating sites and 7 are essentially estimates of the population mutation rate 6 - i.e. 4N, .

Under ideal conditions - i.e. neutrality, our two estimates of 6 should be equivalent to one another. Differences
between these estimates suggest either the action of selection or some kind of demographic change.

Tajima’s D is a statistical test that allows us to actually investigate this. We can calculate it very easily in R
using the tajima.test functionin pegas .

# calculate Tajima's D for the woodmouse data
tajima.test(woodmouse)

This produces a list with three elements. The first is an estimate of Tajima’s D and the other two are p-values
assessing the significance of the statistic. They are both similar here and also both show that there is no
significant deviation from zero.

Calculating statistics at the whole genome level

So far we have calculated descriptive statistics from two sets of sequence data. This is obviously useful to
demonstrate how these statistics work and reinforcing our understanding of them. However, in modern
evolutionary genetics, we are often working with much larger datasets than what we have dealt with so far. As
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sequencing technology becomes cheaper, faster and more accessible, we are regularly working with genome-
scale data. This has implications for how we handle data and also how we interpret it and use it to test
hypotheses or make some form of evolutionary inference.

In this section of the tutorial, we will use a package called PopGenome to read variants called from whole
genome resequencing data into R and then we will calculate nucleotide diversity within and among
populations and also along a single chromosome. A word of caution PopGenome is a very useful package, but
it is not always the most user friendly, so we have done our best to simplify matters as much as possible here.

Reading in variant data

The data we are going to be working with for this section is a set of SNP calls from whole-genome
resequencing of Passer sparrows. It was originally used in a study on the evolution of human commensalism in
the house sparrow by Ravinet et al. (2018) (http://rspb.royalsocietypublishing.org/content/285/1884/20181246).
In the dataset there are SNPs from four sparrow species - the house sparrow, the Italian sparrow, the Spanish
sparrow, the tree sparrow and also data from a house sparrow sub-species known as the Bactrianus sparrow.

The data comes in two parts. We'll deal with the actual SNP data first. This is stored in a file called a VCF,
which stands for variant call format (https://samtools.github.io/hts-specs/VCFv4.2.pdf). This is a standard file
format for storing SNP data and is produced by a lot of SNP calling pipelines. It is beyond the scope of todays
tutorial to go into much detail about VCF files - all you really need to do today is understand that it is a format
we need to read in to R in order to work with the SNP data.

One thing you should know about VCF files though is that they can quickly become very very big. The one we
are using today is a much smaller, randomly sampled version of the true dataset from a single chromosome
only, however it is still quite a large file size. Because it is large, the file is compressed and there are some
preprocessing steps you will need to do before you can openinitin R.

« First, download the VCF (https://evolutionarygenetics.github.io/sparrow_chr8_downsample.vcf.gz)

» Next, make a directory in your working directory (use getwd if you don’t know where that is) and call it
sparrow_snps

» Move the downloaded VCF into this new directory and then uncompress it. If you do not have an
program for this, you can either use the Unarchiver (https://theunarchiver.com/) (Mac OS X) or 7zip
(https://www.7-zip.org/) (Windows).

» Make sure only the uncompressed file is present in the directory.

With these steps carried out, you can then easily read this data in like so:

sparrows <- readData("./sparrow_snps/", format = "VCF", include.unknown = TRUE, FAST = TRUE)

N.B This command does not always work on Windows machines. If you are using Windows, you might
need to change the path to "./sparrow_snps" -i.e. so it is missing the last backslash.

First, we point the readbata function at the directory where our decompressed VCF is. The following
arguments are: * format = VCF function to tell it is a VCF (since PopGenome can read in other file types).
include.unknown = TRUE this is just an argument to readbata to let it know that any SNPs where there are
unknown calls should be included. We need this as not all individuals have data for each site. FAST = TRUE to
tell the function we want it to use fast computation.

So we just read a variant data from an entire chromsome into R. Before we move on, let’s take a look at what
we have actually created with our sparrows object. If you call the sparrows object, you will not really see
anything that informative, since it is a very complex data structure. However with the get.sum.data function,
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we can learn a bit more about it.
get.sum.data(sparrows)

This just gives us a quick summary of what we read in. A word of warning here - the n.sites value here is
NOT the number of SNPs we read in - it is simply the position of the furthest SNP in our dataset on
chromosome 8. We can essentially ignore this value. To get the number of variants or SNPs in our VCF, we
need to add together n.biallelic.sites (i.e. SNP sites with only two alleles) and n.polyallelic.sites
(i.e. SNP sites with three or four alleles).

You can do this by hand or using R code like so:
sparrows@n.biallelic.sites + sparrows@n.polyallelic.sites

This also demonstrates one other important point about PopGenome , the sparrows object is a complicated
structure called a GENOME object (use class(sparrows) to see this). Unlike other R structures we have seen
so far, we need to use @ to access some parts of it. This is a little confusing, but you can think of it in acting in
a similar way to the $ operator we used to access columns of a data.frame .

Handling variant data

One thing we haven’t done yet is set the populations in our dataset. We have data for 129 individuals, each
from different species. Does reading in the variant data tell us anything about the populations?

# check for population data
sparrows@populations

If you look at this, you will only see a blank list. So we need to supply our population data to the sparrows
object. To make naming our populations simple, we will read in some external data. This is easy, as it is just a
data.frame which you can download here (https://evolutionarygenetics.github.io/sparrow_pops.txt)

sparrow_info <- read_delim("./sparrow_pops.txt", delim = "\t")

If you take a quick look at sparrow_info , you will see that it has two columns, one for an individual name and
one for the population it belongs to. You can easily count the number of species with a tidyverse approach
using group_by and tally oruse table onthe pop column if you want to use a base R approach.

What we are going to do next is create a list of the individuals in each of the populations. This is actually very
easy to do using the split command, like so:

# now get the data for the popultions
populations <- split(sparrow_info$ind, sparrow_info$pop)

All split does is split the first argument (individual names in this case), by a factor variable in the second
argument (population or species here). So, our use of split will create a list of 5 populations with the names
of individuals in each one stored as character vectors in the list. We can then use this to set the populations in
our sparrow dataset:

# now set
sparrows <- set.populations(sparrows, populations, diploid = T)

#H | : | : | 100 %
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At first glance, there is no obvious clue this actually worked, but we can check it by accessing the
populations data in the sparrows object again.

# check that it worked
sparrows@populations

Calculating nucleotide diversity statistics

So, let’s recap so far. We have over 90,000 SNPs from chromsome 8 of 129 sparrows from five different
species. With the PopGenome package, we can now very quickly ad easily calculate nucleotide diversity for
every single one of these SNPs. We will do this like so:

# calculate nucleotide diversity
sparrows <- diversity.stats(sparrows, pi = TRUE)

A nice, simple function that just requires us to specify that we want to calculate 7 using pi = TRUE . Let’s try
and get at the data. Unfortunately, this is where things become a little more tricky since the GENOME object data
structure is quite complicated. Use the following function to extract the data.

sparrow_nuc_div <- t(sparrows@region.stats@nuc.diversity.within[[1]])

Basically, we extracted the nucleotide data for each of the species from GENOME object and used t to
transpose the data, so that each row is a SNP and each column is a species. But if you look at the
sparrow_nuc_div matrix (tip: use the head function), you will see it is still not ideal for interpretation - the
populations have no names and we don’t have a proper data structure - i.e. the SNP positions are stored as
row names.

We can use some code to get the data into a more suitable format for visualisation and interpretation.

# get the SNP positions from the rownames - note we need to make them numeric here
position <- as.numeric(rownames(sparrow_nuc_div))

# rename the matrix columns after the species

colnames(sparrow_nuc_div) <- c("bactrianus", "house", "italian", "spanish", "tree")
# combine into a data.frame and remove the row.names

sparrow_nd <- data.frame(position, sparrow_nuc_div, row.names = NULL)

# make a tibble for easy viewing

sparrow_nd <- as.tibble(sparrow_nd)

## Warning: “as.tibble()’ is deprecated, use “as_tibble()" (but mind the new semantics).
## This warning is displayed once per session.

One thing to note here - our sparrow_nd data.frame is 91,312 rows - this is the same as the number of biallelic
SNPs, which tells us that PopGenome only calculates nucleotide diversity on these positions, not those with
more than two alleles.

Visualising nucleotide diversity along the chromosome

Lastly, we will actually visualise the nucleotide diversity for the house sparrow along the whole of chromosome
8. Since we set up a data.frame in the last section, this is very easy to do with ggplot2 .
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ggplot(sparrow_nd, aes(position, house)) + geom_point()
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Hmm - this is not the most visually appealing figure and it is also not particularly informative. Why is that? Well
one of the issues here is that we have calculated nucleotide diversity for each biallelic SNP position so there is
a lot of noise and the signal from the data is not clear.

This is often the case when working with high-density genome data. One solution is to use a sliding window
analyis in order to try and capture the average variation across a chromosome. We will learn how to do this in
the next section.

Performing a sliding window analysis

Luckily, it is very easy indeed to perform a sliding window analysis using PopGenome . We just need to use the
function sliding.window.transform to create a new GENOME object called sparrows_sw

# make a sliding window dataset
sparrows_sw <- sliding.window.transform(sparrows, width = 100000, jump = 25000, type = 2)

#H | : : | 100 %

The first argument to this function is our sparrows object. Next we specify the size of each window in the
genome - here we will use 100000 basepairs or 100 Kb. We then set the step or jump for each window - in
this case 25000 or 25 Kb. What this means is that we calculate a statistic in a 100 Kb window and then move
along 25 Kb and calculate the statistic again and so on and so on until we have moved along the entire
chromosome.
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Dividing our chromsome up into windows, means that instead of 90,000 plus estimates of nucleotide diversity,
we will get... as many as we have windows! And the easiest way to check how many windows we have is like
So:

# check number of genome windows
length(sparrows_sw@region.names)

## [1] 1984
We can then recalculate nucleotide diversity in exactly the same way on our windowed data as we did before.

# calculate nucleotide diversity
sparrows_sw <- diversity.stats(sparrows_sw, pi = TRUE)

It is also much easier to extract this data.
sparrow_nuc_div_sw <- sparrows_sw@nuc.diversity.within

However, a key point here is that our nucleotide diversity estimates are not scaled to the size of our genome
windows. Use head(sparrow_nuc_div_sw) to see that the values we have calculated are very high.
Remember, we need to standardise nucleotide diversity to the length of the sequence we estimated it from. In
this case, we used 100 Kb windows, so we need to divide these values by 100000. We do this like so:

sparrow_nuc_div_sw <- sparrow_nuc_div_sw/100000

Finally, we can get it into a format ready for plotting. However, since we don’t SNP positions for this data, since
it is for sliding genome windows. Remember that we set our windows to be 100 Kb, but with a step of 25 Kb.
So the midpoint for our first window is at 50 kb, the second window at 75 kb and so on. We can generate
midpoint positions for our windows with seq .

# generate window midpoints
position <- seq(from = 1, to = 49575001, by = 25000) + 50000

Here we set the first and last positions and then specify we want to generate values at intervals of 25000.
Finally we add 50000 in order to make the midpoint of each window. Use head(positions) to examine the
start of the vector and see.

Next all we need to do to create the final dataset for plotting is the same as we did for our per-snp analysis
above.

# rename the matrix columns after the species

colnames(sparrow_nuc_div_sw) <- c("bactrianus"”, "house", "italian", "spanish", "tree")
# combine into a data.frame and remove the row.names

sparrow_nd_sw <- data.frame(position, sparrow_nuc_div_sw, row.names = NULL)

# make a tibble for easy viewing

sparrow_nd_sw <- as.tibble(sparrow_nd_sw)

Last but not least, we can actually plot our data, using ggplot2 .
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ggplot(sparrow_nd_sw, aes(position, house)) + geom_line(colour = "blue") + theme_light()
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This is much more informative than our per SNP figure from before. What is more, we can see clearly there are
several regions on this chromosome where there is a signficant reduction in nucleotide diversity, particularly
around 30 Mb. We cannot say exactly what might be causing this without inferring other statistics or examining
other data, but one possibility is that this is a region of reduced recombination where selection has led to a
reduction in diversity. If it is shared with other sparrow species, it might suggest some kind of genome structure
such as a centromere - where recombination rates are usually lower.

The point is that sliding window information like this can be extremely informative for evolutionary analysis.
Although we only got a quick introduction to genomic data in today’s tutorial, we will return to this sort of
dataset again in the next session and explore more fully how we can use it to infer processes that might shape
the distribution of these sorts of statistics in the genome.

Study questions

For study questions on this tutorial, download the Chapter7_R_questions.R from Canvas or find it here
(https://evolutionarygenetics.github.io/Chapter7_R_questions.R).

Going further

« A simple tutorial on using PopGenome for inference in R (http://tonig-evo.github.io/workshop-
popgenome/)

» Some more information on performing whole-genome analyses in PopGenome (https://cran.r-
project.org/web/packages/PopGenome/vignettes/Whole _genome_analyses using VCF _files.pdf)

» More examples with PopGenome and also other R packages for sequence data
(https://wurmlab.github.io/genomicscourse/2016-SIB/practicals/population_genetics/popgen)
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