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« Next, make a directory in your working directory (use getwd if you don’t know where that is) and call it
sparrow_snps

« Move the downloaded VCF into this new directory and then uncompress it. If you do not have an
program for this, you can either use the Unarchiver (https://theunarchiver.com/) (Mac OS X) or 7zip
(https://www.7-zip.org/) (Windows).

» Make sure only the uncompressed file is present in the directory.

With these steps carried out, you can then easily read this data in like so:

sparrows <- readData("./sparrow_snps/", format = "VCF", include.unknown = TRUE, FAST = TRUE)

Examining the variant data

Remember, you can look the data we have read in using the following command:
get.sum.data(sparrows)

In this case, you can see that from the n.sites that the final site is at position 49,693,117. The actual
chromosome is 49,693,984 long - so this confirms variants span the entire chromosome. Note that n.sites is
a bit counter-intuitive here, it would only make sense as the number of sites if we had called nucleotides at
every single position in the genome - but since this is a variant call format, only containing polymorphic
positions then obviously this is not the case. Furthermore, the data has actually been subset in order to make it
more manageable for our purposes today.

Nonetheless, it is still substantial, from the n.biallelic.sites we can see there are 91,312 bilallelic SNPs
and from n.polyallelic.sites , there are 1092 positions with more than two alleles. So in total we have:

sparrows@n.biallelic.sites + sparrows@n.polyallelic.sites

A total of 92,404 SNPs - a big dataset which requires some specific approaches to handling the data.
Setting populations/species identifiers

Since we’re going to be examining differences between species, we need to identify them in our dataset. In
other words, we need to set some kind of information on the populations they belong to. We can use the
following code to see if any population information is actually stored in the VCF.

# check for population data
sparrows@populations

Since at this point, the command only returns a blank list, we need to do something about it. As with the last
session, we can read in some information to set the population names. If you ran through the last session, you
will already have this data but if not, you can download it again here
(https://evolutionarygenetics.github.io/sparrow_pops.txt) and then read it into R as a tab-delimited file.

sparrow_info <- read_delim("./sparrow_pops.txt", delim = "\t")
If you take a quick look at sparrow_info , you will see that it has two columns, one for an individual name and

one for the population it belongs to. Next, we will create a list of the individuals in each of the populations. This
is actually very easy to do using the split command, like so:
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# now get the data for the popultions
populations <- split(sparrow_info$ind, sparrow_info$pop)

Remember that all split does is split the first argument (individual names in this case), by a factor variable in
the second argument (population or species here). So, our use of split will create a list of 5 populations with
the names of individuals in each one stored as character vectors in the list. We can then use this to set the
populations in our sparrow dataset:

# now set
sparrows <- set.populations(sparrows, populations, diploid = T)

## | : | : | 100 %

At first glance, there is no obvious clue this actually worked, but we can check it by accessing the
populations data in the sparrows object again.

# check that it worked
sparrows@populations

Setting up sliding windows

So far, this will start to seem quite familiar! We learned in the last session that per-SNP estimates of statistics
such as 7 can often be extremely noisy when you are calculating them on very large numbers of markers. As
well as this, there are issues with the fact that SNP positions in close proximity are not always independent
due to recombination - this is a theme we will return too shortly. So for this reason, it is often better to use a
sliding-window approach - i.e. split the genome into windows of a particular size and then calculate the mean
for a statistic within that window.

We know already that chromosome 8 is 49,693,984 bp long, so we can get an idea of how many sliding
windows we would generate by using some R code. We’'ll set our sliding window to be 100,000 bp wide - or
100 Kb. We will also set a step or jump for our window of 25,000 bp - or 25Kb.

# set chromosome size
chr8 <- 49693984

# set window size and window jump
window_size <- 100000
window_jump <- 25000

# use seq to find the start points of each window
window_start <- seq(from = 1, to = chr8, by = window_jump)
# add the size of the window to each start point
window_stop <- window_start + window_size

If you ran this code successfully, you can see that we have now generated two vectors window_start and
window_stop . To create the windows, we used seq to go from 1 - i.e. the first basepair - up to the full
chromosome 8 length in 25 Kb jumps or steps. The we just add the window size to each of these start points to
get the stop points of the windows. So the first window runs from 1 to 100 Kb, the second window from 25 Kb
to 125 Kb and so on.

However, there is an issue here. Some of the windows stop after the end of the chromosome, so we need to
remove these. You can use the following code and logical operations to see that all windows start before the
end of the chromosome but that because of how we generated the stop windows, this is not the case for the
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stop positions.

# no windows start before the end of chromosome 8
sum(window_start > chr8)

# but some window stop positions do occur past the final point
sum(window_stop > chr8)

In fact, there are 4 windows that are beyond the end of the chromosome. To remove them, we can use the
same logical operations as above, just this time within square brackets to drop those positions.

# remove windows from the start and stop vectors
window_start <- window_start[which(window_stop < chr8)]
window_stop <- window_stop[which(window_stop < chr8)]

Note that here we wrapped our logical operation window_stop < chr8 ina which function - this basically tells
R to return the position in the vector where this condition is TRUE . Also note that we have to remove the start
windows that meet this condition too. Why? Well because we are using a sliding window and our window size
is 100 kb, the window starting at 49,675,001 will come close to the end of the chromosome.

Actually, this highlights an important point, our final window actually falls short of the end of the chromosome.
You can check this like so:

chr8 - window_stop[length(window_stop)]

Note that here, length(window_stop) in the square brackets just means we are evaluating the final value in
the window_stop vector. This is something to be aware of, since our final window falls short of the end of the

chromosome, we may not be including all our variants. This is not necessarily wrong, but it is important to note.

Anyway, although a little long-winded, this sliding window section is important as it will be useful for plotting
later. For now, we will save our sliding window start/stop positions as a data.frame . We’'ll also calculate the
midpoint for each window.

# save as a data.frame
windows <- data.frame(start = window_start, stop = window_stop,
mid = window_start + (window_stop-window_start)/2)

Finally, we can set our sliding windows for our sparrows dataset using the PopGenome function,

sliding.window.transform

# make a sliding window dataset
sparrows_sw <- sliding.window.transform(sparrows, width = 100000, jump = 25000, type = 2)

Calculating sliding window estimates of nucleotide diversity and
differentiation

Now that we have set up the data, the population information and the sliding windows, it is quite
straightforward for us to calculate some statistics we are interested in. In this case, we are going to calculate
nucleotide diversity (i.e. ) and Fst. We will also generate a third statistic, d_XY_, which is the absolute
nucleotide divergence between two populations.
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First we will calculate 7r. Handily, the following command also sets up what we need for d_XY _.

# calculate diversity statistics
sparrows_sw <- diversity.stats(sparrows_sw, pi = TRUE)

Next we will calculate Fs1, which again is very straight forward with a single command.

# calculate diversity statistics

sparrows_sw <- F_ST.stats(sparrows_sw, mode = "nucleotide")
## | | | 100 %

Note that here we use mode = "nucleotide" to specify we want it to be calculated sliding averages of
nucleotides, rather than using haplotype data, which is the alternative. And that’s it for calculating the statistics!
As you will see in the next section, extracting them from the sparrows_sw object is actually more difficult than
generating them...

Extracting statistics for visualisation

Since we ran our analysis on a sliding-window basis, we should have estimates of 7, Fst and d_XY_ for each
window. What we want to do now is extract all our statistics and place them in a single data.frame for easier
downstream visualisation - this will let us identify how these statistics are interrelated.

First of all, we will get the nucleotide diversity data.

# extract nucleotide diversity and correct for window size
nd <- sparrows_sw@nuc.diversity.within/100000

This is straightforward, but remember also that our estimates need to be corrected for window size - so we
divide them by 100 Kb here. We should also add the population names to each of them, since they are not
already set.

# make population name vector

pops <- c("bactrianus", "house", "italian", "spanish", "tree")
# set population names

colnames(nd) <- paste@(pops, "_pi")

We will learn about pastee in more detail shortly. For now, we can extract Fgt

# extract fst values
fst <- t(sparrows_sw@nuc.F_ST.pairwise)

Note that here, we need to use t() to transpose the F_ST matrix so that each column is a pairwise
comparison and each row is an estimate for a genome window. Since F_ST is pairwise, the column names are
also quite different and will also be the same for d_XY_, which is also a pairwise measure. For this reason, we
will deal with these column names together shortly.

So now we are ready to extract our final statistic, d_XY_. We can do this in a similar way to how we handled
the Fgt data.
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# extract dxy - pairwise absolute nucleotide diversity
dxy <- get.diversity(sparrows_sw, between = T)[[2]]/100000

As with nucleotide diversity, we also corrected d_XY_ for the window size.

Now we sort out the column names for our Fst and d_XY_ data. This is where our R skills come in use! We
will need to use some R-based string manipulation. The column names are identical for both datasets, so we
will take the first one and use the sub function to replace the population names.

get column names

<- colnames(fst)

replace all occurrences of popl with house

<- sub("popl", "bactrianus", x)

does the same thing as above but by indexing the pops vector
<- sub("popl", pops[1], x)

Look at x to confirm the replacement has occurred

X H X H X H*H X H

All sub does is replace the first argument, pop1 in this case, with the second, bactrianus here. In other
words, it is a kind of find and replace for character strings. The second example in the code above does
exactly the same thing, but instead calls the relevant population from the pops vector we created earlier.

Now we know what sub does, we can replace all the different populations at once. Like so:

# get column names

X <- colnames(fst)

# does the same thing as above but by indexing the pops vector

X <- sub("popl", pops[1l], X)

X <- sub("pop2", pops[2], X)

X <- sub("pop3", pops[3], x)

X <- sub("popd", pops[4], x)

X <- sub("pop5", pops[5], X)

# replace forward slash

X <- sub("/", "_", x)

# Look at x to confirm the replacement has occurred

X

## [1] "bactrianus_house" "bactrianus_italian" "bactrianus_spanish"
## [4] "bactrianus_tree" "house_italian" "house_spanish"
## [7] "house_tree" "italian_spanish" "italian_tree"
## [10] "spanish_tree"

Now all that we need to do is make clear these names are for either F5t or d_XY_. The best way to do this is
to append a suffix to our vector of pairwise comparison names. We can do this using pasteo :

paste@(x, " _fst")
paste@(x, " _dxy")

So this function allows us to join strings together in a character vector. Very useful. Next we will actually
change the column names of our two data matrices, before we put everything together in our final dataset.

colnames(fst) <- pasted(x, "_fst")
colnames(dxy) <- paste@(x, "_dxy")
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Ok so now that our 7, Fgt and d_XY_ datasets are ready, we can combine them all together with our windows

information from earlier into a big dataset.

sparrow_data <- as.tibble(data.frame(windows, nd, fst, dxy))

## Warning: “as.tibble()" is deprecated, use “as_tibble()" (but mind the new semantics).
## This warning is displayed once per session.

Visualising the data - distributions

For the purposes of this session, we will focus mainly on the difference between house and spanish sparrows.
However, since we now have all our data in a tidy data.frame, it is very easy to calculate things like the mean

values of our statistics among all the different species. For example, let's say we want to look at mean
nucleotide diversity, we can do that like so:

# select nucleotide diversity data and calculate means
sparrow_data %>% select(contains("pi")) %>% summarise_all(mean)

A lot of this will be familiar from before but to clarify, we used select and contains to select columns from

our main dataset that contain pi - i.e. nucleotide diversity columns. We then used summarise_all and mean

to calculate the mean value for all of the columns we selected. From the output above, we can see that the
house and the lItalian sparrow have the highest levels of nucleotide diversity.

We could also quite easily plot if we wanted to. However, to do this, we need to use gather on the data.

# gather the data

pi_g <- sparrow_data %>% select(contains("pi")) %>% gather(key = "species", value = "pi")
# make a boxplot

a <- ggplot(pi_g, aes(species, pi)) + geom_boxplot() + theme_light() + xlab(NULL)

This makes it much clearer how nucleotide diversity differs among the species.

Visualising patterns along the chromosome

Let’'s have a look at how Fg between house and spanish sparrows varies along chromosome 8. We can do
this very simply with ggplot .

a <- ggplot(sparrow_data, aes(mid/1076, house_spanish_fst)) + geom_line(colour = "red")
a <- a + xlab("Position (Mb)") + ylab(expression(italic(F)[ST]))
a + theme_light()
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From this plot, it is very clear there is a huge peak in Fgt around 30 Mb. Actually, there are several large peaks

on this genome but is this one a potential region that might harbour a speciation gene? Well you might recall
from the previous session that there is a drop in nucleotide diversity in this region...

How can we investiage this? The easiest thing to do is to plot 7w, Fst and d_XY_ to examine how they co-vary
along the genome. This requires a bit of data manipulation, but is relatively straightforward. We will break it
down into steps.

First, let’s get the data we are interested in:

# select data of interest
hs <- sparrow_data %>% select(mid, house_pi, spanish_pi, house_spanish_fst, house_spanish_dx
y)

To keep things simple, we’ve thrown everything out we don’t need. Next, we need to use gather in order to
rearrange our data.frame so that we can plot it properly.

# use gather to rearrange everything
hs_g <- gather(hs, -mid, key = "stat", value = "value")

gather is a tricky function to explain, although we have encountered it back in Chapter 2
(https://evolutionarygenetics.github.io/Chapter2.html). All it does is collapse everything so we can plot them
efficiently. We use -mid to tell the function we want to leave this out of the gathering and use key = stat to
make it clear we are arranging our data by the statistics we have calculated, value = value is just a name for
the values of each of our statistics.

Now we can easily plot everything together like so:
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a <- ggplot(hs_g, aes(mid/10”6, value, colour = stat)) + geom_line()
a <- a + xlab("Position (Mb)")
a + theme_light()
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OK so it should be immediately obvious that this plot is really unhelpful. We see the Fg data again, but since
that is on such a different scale to estimates of ™ and d_XY_, we can’t see anything! Instead, it would make a
lot more sense to split our plot into facets - i.e. a plot panel for each statistic. This is simple with the ggplot
function facet_grid . We will construct our plot first and then breakdown what facet_grid actually does.

# construct a plot with facets

a <- ggplot(hs_g, aes(mid/10”6, value, colour = stat)) + geom_line()
a <- a + facet_grid(stat~., scales = "free_y")

a <- a + xlab("Position (Mb)")

a + theme_light() + theme(legend.position = "none"
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The facet_grid function allows us to split our data across panels for quick and easy visualisation. In this
case, we split our data by the stat variable - we used stat~. to specify we want this done by rows (compare
with .~stat for the column equivalent). We also specified that we wanted the scales on our y-axes to vary
with scales = free_ y .

However, before we examine our plot in detail, it would also be easier if we rearranged everything so Fgt came
at the top, 7 beneath it and then finally, d_XY_. How can we do that? Well we need to reorder the stat factor
in our hs_g dataset.

# first make a factor

x <- factor(hs_g$stat)

# then reorder the levels

x <- factor(x, levels(x)[c(3, 1, 4, 2)])
# add to data.frame

hs_g$stat <- x

This looks a little complicated, but in the square brackets above we simply rearranged what order our facets
are displayed. We can replot our figure to demonstrate this:

# construct a plot with facets

a <- ggplot(hs_g, aes(mid/10”6, value, colour = stat)) + geom_line()
a <- a + facet_grid(stat~., scales = "free_y")

a <- a + xlab("Position (Mb)")

a + theme_light() + theme(legend.position = "none"
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Examining the plot we created, it is pretty clear that the large peak in Fgt on our chromosome is matched by
two regions of low nucleotide diversity in the house and Spanish sparrow, d_XY _is also very low in the same
region.

The signal here is quite clear - what could explain it? Low recombination regions in the genome are one
potential explanation. The reason for this is that in a low recombination region, background selection and
also selective sweeps can remove variation at polymorphic positions that are closely linked to the target of
selection. Selection of this kind in either the house or the Spanish lineages AFTER they have split into different
species will reduce 7 in these regions and since Fgt is a relative measure of differentiation, it will potentially be
inflated.

This is an important issue as it means that we cannot reliably use Fgt to identify genes involved in reproductive
isolation from a genome scan. By comparing Fst to d_XY_ here, we see the later is also reduced in this
region, which again suggests it is likely that some sort of genome structure might be responsible for the peak
in FsT we see. One way to investigate this is examine the recombination rate variation along chromosome 8 -
which we will do in the next section.

Investigating recombination rate variation

To check whether variation in recombination might explain the pattern we observed, we will read in the
recombination rate estimated for 100 Kb windows with a 25 Kb step on chromoosme 8. This was originally
estimated from a house sparrow linkage map, published by Elgvin et al (2018)
(http://advances.sciencemag.org/content/3/6/e1602996) and you can download the data here
(https://evolutionarygenetics.github.io/chr8_recomb.tsv). We will read the data in like normal

rrate <- read_delim("./chr8_recomb.tsv", delim = "\t")
Since the recombination rate is the same number of rows as our main dataset, we can just add it as a column.
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# assign recombination rate to full sparrow dataset
sparrow_data$recomb <- rrate$recomb

Now we are ready to see whether the variation in nucleotide diversity and Fgt can be explained by
recombination rate. Let’s plot how it varies along the genome.

# construct a plot for recombination rate

a <- ggplot(sparrow_data, aes(mid/1076, recomb)) + geom_line()

a <- a + xlab("Position (Mb)") + ylab("Recombination rate (cM/Mb)")
a + theme_light()
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To explain this a little, we have plotted recombination rate in centiMorgans per Megabase - i.e. essentially the
probability that a recombination event can occur. The higher this value is, the higher the probability of
recombination. The first obvious point to take home from this figure is that our recombination rate varies quite
significantly across the genome. Secondly, we see quite a drastic reduction in recombination rate between
about 23 Mb and 30 Mb. This is exactly where our Fgt peak occurs. to confirm this, we will plot both statistics
together.

# subset data and gather

hr <- sparrow_data %>% select(mid, house_spanish_fst, recomb) %>% gather(-mid, key = "stat",
value = "value")

# make a facet plot

<- ggplot(hr, aes(mid/1076, value)) + geom_line()

a <- a + facet_grid(stat~., scales = "free_y")

a <- a + xlab("Position (Mb)") + ylab("Recombination rate (cM/Mb)")

a + theme_light()

[s)]
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When we plot our data like this, it is actually more clear that perhaps both of the large peaks on chromosome 8
occur in an area of very low recombination. What could be causing such low recombination? Well one
possibility is the centromere (https://en.wikipedia.org/wiki/Centromere) is likely to be present here.

Now that we have recombination data read into R, we can also explore the relationships between
recombination rate and other statistics in more detail. To demonstrate this, we will plot the joint distribution of
recombination rate and Fgt between house and Spanish sparrows.

# plot recombination rate and fst

a <- ggplot(sparrow_data, aes(recomb, house_spanish_fst)) + geom_point()

a <- a + xlab("Recombination rate (cM/Mb)") + ylab(expression(italic(F[ST])))
a + theme_light()
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Clearly there is a bias here - higher Fg7 values are found in regions of low recombination. Although this doesn’t
completely invalidate the use of Fgt in speciation genomics, it does mean we must be cautious when using it
to identify genes involved in speciation. If we had not done so here, it would have been quite easy to mistake
the peak on chromosome 8 as having an important role in maintaining reproductive isolation between house
and Spanish sparrows.

Study questions

For study questions on this tutorial, download the Chapter8 R_questions.R from Canvas or find it here
(https://evolutionarygenetics.github.io/Chapter8_R_questions.R).

Going further

» A nice review on what we mean by speciation genomics
(https://academic.oup.com/biolinnean/article/124/4/561/5035934)

» Some more information on performing whole-genome analyses in PopGenome (https://cran.r-
project.org/web/packages/PopGenome/vignettes/WWhole_genome_analyses _using_VCF _files.pdf)

» Additional learning resources on speciation genomics using Python, R and Unix
(http://evomics.org/learning/population-and-speciation-genomics/2018-population-and-speciation-
genomics/)
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