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R has a number of extremely powerful packages for performing phylogenetic analysis, from plotting trees to
testing comparative models of evolution. You can see here (https://cran.r-
project.org/web/views/Phylogenetics.html) for more information if you are interested in learning about what sort
of things are possible. For today’s session, we will learn how to handle and visualise phylogenetic trees in R.
We will also construct a series of trees from a sequence alignment. First, let's familiarise ourselves with how R
handles phylogenetic data.

Storing trees in R

The backbone of most phylogenetic analysis in R comes from the functions that are part of the ape package.
ape stores trees as phylo objects, which are easy to access and manipulate. The easiest way to understand
this is to have a look at a simple phylogeny, so we’'ll create a random tree now.

# set seed to ensure the same tree is produced
set.seed(32)

# generate a tree

tree <- rtree(n = 4, tip.label = c("a", "b", "c", "d"))

What have we done here? First, the set.seed function just sets a seed for our random simulation of a tree.
You won’t need to worry about this for the majority of the time, here we are using it to make sure that when we
randomly create a tree, we all create the same one.

What you need to focus on is the second line of code that uses the rtree function. This is simply a means to
generate a random tree. With the n = 4 argument, we are simply stating our tree will have four taxa and we
are already specifying what they should be called with the tip.label argument.

Let’s take a closer look at our tree object. Itis a phylo object - you can demonstrate this to yourself with

class(tree) .

tree

#it

## Phylogenetic tree with 4 tips and 3 internal nodes.
##

## Tip labels:

## [1] "c™ "a" "d" "b"

#it

## Rooted; includes branch lengths.

By printing tree to the console, we see it is a tree with 5 tips, 4 internal nodes, a set of tip labels. We also see
it is rooted and that the branch lengths are stored in this object too.
You can actually look more deeply into the data stored within the tree object if you want to. Try the following

code and see what is inside.

str(tree)
objects(tree)
tree$edge
tree$edge.length

It is of course, much easier to understand a tree when we visualise it. Luckily this is extremely easy in R.

plot(tree)
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In the next section, we will learn more about how to plot trees.

Plotting trees

We can actually do a lot with our trees in R using a few simple plot commands. Let’s generate another random
tree, this time with 5 taxa.

# set seed to ensure the same tree is produced

set.seed(32)

# generate a tree

tree <- rtree(n = 5, tip.label = c("a", "b", "c", "d", "e"))

First of all, let’s plot our new tree using the default plot settings. Except unlike last time, we will suppress the
branch lenghts.

# plot tree and suppress branch lLengths
plot(tree, use.edge.length = FALSE)
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All we did here was set the use.edge.length argument to false, suppressing the branch lengths. The standar
tree plot that ape creates is a phylogram. However, there are a number of other different plotting methods we
can use.

We can plot a cladogram for example.

# plot cladogram
plot(tree, type = "cladogram", use.edge.length = FALSE)
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We can plot our tree as if it had no root.

# plot unrooted
plot(tree, type = "unrooted", use.edge.length = FALSE)
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We can also make a radial tree, which is a convenient way to plot many taxa at once.

# plot fan/radial treee
plot(tree, type = "fan", use.edge.length = FALSE)
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We can also easily set many different graphical parameters to make our tree look a specific way. So for
example

# plot fan/radial treee
plot(tree, use.edge.length = FALSE, edge.width = 2, edge.color = "red")

7125



oD

D

]

Manipulating trees

As well as simply plotting trees, it is possible to manipulate them to make them look a certain way or to focus
on a specific group of taxa. ape has a number of powerful functions that allow us to do this quite easily. To
start, let's make a new random tree, this time with 5 taxa.

# set seed (to ensure the same tree 1is drawn for all)
set.seed(32)

# make a new tree with 5 tips - one is root

tree <- rtree(n = 5, tip.label = c("a", "b", "c", "d", "e"))
# plot the tree

plot(tree)
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Let’'s say we want to remove a tip from our tree - we can easily achieve this with the drop.tip function.

# drop a tip
prune_tree <- drop.tip(tree, "d")
plot(prune_tree)
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All we have to do is give the drop.tip function the name of the tip we want to remove and it will do the rest for
us.

Perhaps we want to rotate our tree, so that the tips are orientated slightly differently? This is also very easily
achieved with the rotate function.

# rotate tree

prune_treel <- rotate(prune_tree, c("b", "a"))
# plot newly rotate tree
plot(prune_treel)
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All we did here was specify we want the tree rotated on the internal node that joins a and b, which in this
case is the root of the tree. What if we want to rotate another set of taxa, such as ¢ and e ? Well it is actually

much more straightforward to specify the node rather than the tip names. But how can you know the names of
each of the nodes? Luckily there is an easy way to display them.

# show nodes on tree

plot(prune_treel)
nodelabels()
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So we want to rotate our tree on node 7. Thus we can rerun the code using rotate but this time with the node
specified, not the tips:

# rotate tree specifying node
prune_tree2 <- rotate(prune_treel, 7)
# plot newly rotate tree
plot(prune_tree2)
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Note that rotating trees just alters the way we plot them, it does not make any difference to the evolutionary
relationship among the taxa shown on them.

# set seed

set.seed(32)

# make a random tree of three taxa

tree <- rtree(n = 3, tip.label = c("a", "b", "c"))

# plot the tree

par(mfrow = c(3, 1))

plot(tree, use.edge.length = FALSE, cex = 1.5, no.margin = TRUE)
plot(rotate(tree, 4), use.edge.length = FALSE, cex = 1.5, no.margin = TRUE)
plot(rotate(tree, 5), use.edge.length = FALSE, cex = 1.5, no.margin = TRUE)
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Note that cex just alters the size of the tip labels and no.margin = TRUE suppresses the use of margins for
visualisation. All three of these trees are the same - they are just rotated differently.

A simple example with real data - avian phylogenetics

So far, we have only looked at randomly generated trees. Let’s have a look at some data stored within ape -a
phylogeny of birds at the order level.

# get bird order data
data("bird.orders™)

Let’s plot the phylogeny to have a look at it. We will also add some annotation to make sense of the phylogeny.

plot(bird.orders, no.margin = TRUE)
segments(38, 1, 38, 5, lwd = 2)

text (39, 3, "Proaves", srt = 270)
segments(38, 6, 38, 23, lwd = 2)
text(39, 14.5, "Neoaves", srt = 270)
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Here, the segments and text functions simply specify the bars and names of the two major groups in our

avian phylogeny. We are just using them for display purposes here, but if you'd like to know more about them,
you can look at the R help with ?segments and ?text commands.

Let's focus on the Neoaves clade for now. Perhaps we want to test whether certain families within Neoaves
form a monophyletic group? We can do this easily with the is.monophyletic function.

# Parrots and Passerines?

is.monophyletic(bird.orders, c("Passeriformes"”, "Psittaciformes"))

## [1] FALSE

# hummingbirds and swifts?

is.monophyletic(bird.orders, c("Trochiliformes"”, "Apodiformes"))

## [1] TRUE

We can also easily subset our tree using extract.clade . Let's extract the Neoaves and then plot them.

# extract clade

neoaves <- extract.clade(bird.orders, 29)

# plot
plot(neoaves)
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Clearly the functions provided by ape make it quite easy to handle phylogenies in R.

Constructing trees with R

So far, we have only looked at examples of trees that are already constructed in some way. However, if you are
working with your own data, this is not the case - you need to actually make the tree yourself. Luckily,
phangorn is ideally suited for this. We will use some data, bundled with the package, for the next steps.

# get phangorn primates data
fdir <- system.file("extdata/trees", package = "phangorn")
primates <- read.dna(file.path(fdir, "primates.dna"), format = "interleaved")

This is a set of 14 mitochondrial DNA sequences from 12 primate species and 2 outgroups - a mouse and a
cow. The sequences are 232 basepairs long. The data is originally from this paper
(https://academic.oup.com/mbe/article/5/6/626/1044336) and is a well-known example dataset in
phylogenetics.

We have seen the structure this data is stored in before - it is a DNA.bin object like we worked with in Chapter
7 (https://evolutionarygenetics.github.io/Chapter7.html).

Print primates to your screen and have a look at it. For the next section, we will use just four species - the
hominidae (i.e. Orangutan, Gorilla, Chimpanzee and Human). Let’s subset our data in order to do that.

# subset data to get hominidae
hominidae <- primates[11:14, ]

We also need to convert our dataset so that phangorn is able to use it properly. The package uses a data
structure called phyDAT . Luckily conversion is very easy indeed:
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# convert data
hominidae <- as.phyDat(hominidae)

We are going to create two types of trees - UPGMA and Neighbour Joining. These are distance based
measures and so we must first make a distance matrix among our taxa. We can calculate evolutionary
distance very easily using dist.ml - a function that compares pairwise distances among sequences using a
substitution models.

The default substitution model is the Jukes & Cantor model, but we can also use Felsenstein’s 1981 model too.
Which is the best to apply here? To find that out, we should first test the different models using modelTest :

# perform model selection
hominidae_mt <- modelTest(hominidae, model = c("JC", "F81"), G = FALSE, I = FALSE)

Take a look at the hominidae_mt table. What we have done here is performed a maximum likelihood analysis
and a form of model selection to determine which of the two models we tested - JC69 and F81 (specified by
model = c("JC", "F81") ) best fits our data. We also set G and I to false in order to simplify the output.
Don’t worry too much about what these are for now, but feel free to use ?modelTest if you wish to learn more.

Anyway, how can we interpret this table? Well, we are looking for the model with the ** log likelihood** closest
to zero and also the lowest value of AIC (Akaike information criterion - see here for more information
(https://en.wikipedia.org/wiki/Akaike_information_criterion)). In this case, it is clear that F81 is a better fit for the
data than the JC model, so we will calculate our distance matrix with this model instead.

# first generate a distance matrix
hominidae_mt <- dist.ml(hominidae, model = "F81")

Take a look at hominidae_mt - you will see it is a matrix of the distance between the sequences - i.e. in terms
of the number of nucleotide substitions. Next we can create our trees. For an UPGMA tree, we use the upgma

function:

# upgma tree
hom_upgma <- upgma(hominidae_mt)

Next we will make a neighbour joining tree. This is easily done with the NJ function.

# upgma tree
hom_nj <- NJ(hominidae_mt)

Now that we have created both of our trees, we should plot them to have a look at them.
# plot them both
par(mfrow = c(2, 1))

plot(hom_upgma, no.margin = TRUE)
plot(hom_nj, no.margin = TRUE)
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However, you will remember that the neighbour joining algorithm produces an unrooted phylogeny. This means
the way we plotted it above is incorrect. We can verify that the tree is unrooted (compared to the UPGMA tree)
using the is.rooted function.

# check whether the tree 1is rooted
is.rooted(hom_n7j)
is.rooted(hom_upgma)

So it makes more sense to plot our tree as unrooted. We do this below.

# plot nj unrooted
plot(hom_nj, type = "unrooted")
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We can also set a root on our tree, if we know what we should set the outgroup to. In this case, we can set our

outgroup to Orangutan, because we know it is the most divergent from the clade that consists of humans,
chimps and gorillas.

We will set the root of our neighbour joining tree below using the root function and we’ll then plot it to see
how it looks.

# plot nj rooted

hom_nj_r <- root(hom_nj, "Orang")
plot(hom_nj_r)
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In this case, it hasn’t actually made a huge difference to our tree topology, but with a larger dataset, it might do.

As a final point here, we might want to try and compare our two trees and see which we should accept as the
best model for the evolutionary relationships among our taxa. One way to do this is to use the parsimony
score of a phylogeny. Essentially, the lower the parsimony score is for a tree, the more parsimonious
explanation of the data it might be. This is very easy to achieve with the parsimony function.

# calculate parsimony
parsimony(hom_upgma, hominidae)
parsimony(hom_nj, hominidae)

For the parsimony function, the first argument is the tree, the second is the data. Here we can that both
parsimony scores are equal for the two trees, suggesting that they are both equivalent models of the
evolutionry relationships among the taxa we are studying here.

Population structure

Examining population structure can give us a great deal of insight into the history and origin of populations.
Model-free methods for examining population structure and ancestry, such as principal components analysis
(https://en.wikipedia.org/wiki/Principal_component_analysis) are extremely popular in population genomic
research. This is because it is typically simple to apply and relatively easy to interpret. Essentially, PCA aims to
identify the main axes of variation in a dataset with each axis being independent of the next (i.e. there should
be no correlation between them). The first component summarizes the major axis variation and the second the
next largest and so on, until cumulatively all the available variation is explained. In the context of genetic data,
PCA summarizes the major axes of variation in allele frequencies and then produces the coordinates of
individuals along these axes. For the rest of the tutorial we will conduct a PCA to demonstrate how it can help
give insight to population structure within species.
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Village dogs as an insight to dog domestication

To demonstrate how a PCA can help visualise and interpret population structure, we will use a dataset adapted
from that originally used by Shannon et al. (2015) (http://www.pnas.org/content/112/44/13639) to examine the
genetic diversity in a worldwide sample of domestic dogs. All of us are familiar with domestic dogs as breeds
and pets, but it is easy to overlook the fact that the majority of dogs on earth are in fact free-roaming, human
commensals. Rather than being pets or working animals, they just live alongside humans and are equally
charming (https://en.wikipedia.org/wiki/Free-ranging_dog).

In their study, Shannon et al. (2015) (http://www.pnas.org/content/112/44/13639) surveyed hundreds of dogs
from across the world, focusing mainly on village dogs in developing countries. Since domestic dog breeds are
often characterised by severe bottlenecks and inbreeding, they lack a lot of the diversity that would have been
present when the first became a domestic species. In contrast, village dogs are unlikely to have undergone
such bottlenecks and so might represent a more broad sample of the true genetic diversity present in dogs.

The researchers used a SNP chip and previously published data to collate variant calls from over 5,406 dogs
at 185,805 SNP markers. Of the 5,406 dogs, 549 were village dogs. It is these free-roaming dogs we will focus
on today.

Reading the data into R

In order to run our PCA analysis, we will need to use adegenet . However, the full dataset is much too large to
read, so instead we will use a smaller subsetted dataset. We will read in a special format of SNP data
produced by a program called PLINK (https://www.cog-genomics.org/plink/1.9/). Don’t worry too much about
the data format for now - our main aim is to get it into R. However, feel free to explore the PLINK website if you
are interested.

We will need a plink raw file (https://evolutionarygenetics.github.io/village_subsample.raw) and also a plink
map file (https://evolutionarygenetics.github.io/village_subsample.map) for our dog data. Follow the links to
download the data and then use the read.PLINK function below to read them in.

# read in the dog data

dogs <- read.PLINK(file = "./village_subsample.raw",
map.file = "./village_subsample.map", parallel =T,
chunkSize = 2000)

#it

## Reading PLINK raw format into a genlight object...
##

##

## Reading loci information...

##

## Reading and converting genotypes...
H# .

## Building final object...

##

## ...done.

The function is fairly self-explanatory but the parallel = T argument just tells R to use parallel processing to
read in the large data file. chunkSize = 2000 is also an option to speed up reading in. See ?read.PLINK for
more information.

Running the function will create a genlight object - a special data structure for adegenet . If you call the
dogs obiject, you will see some summary information and also the number of individuals and markers. As you
will see, we have subsampled this data to make it more feasible to run an analysis in R.
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Performing a PCA

With adegenet , PCA on genomic data is very straightforward and easy. We just need to use the glpca
function.

# perform pca on dogs
dogs_pca <- glPca(dogs, parallel = T, nf = 20)

Here again we use parallel = T to use parallel processing. We also use nf = 20 in order to tell the function
we want to retain 2 principal components.

Let’s take a momemnt to look at the output of our PCA analysis.

# Look at pca object
objects(dogs_pca)

Our dogs_pca object is a list with four elements. We can ignore call - thatis just the call to the function we
performed above. eig returns the eigenvalues for all the principal components calculated (not just the ones
retained). We can use this to get an idea of how much of the variance each principal compnent explains and
we will do so in a moment. loadings is a matrix of how the SNPs load onto the PC scores - i.e. how their
changes in allele frequency effect the position of the data points along the axis. Finally the scores matrix is
the actual principal component scores for each individual, allowing us to actually see how the invidivudals are
distributed in our analysis.

For now, let’s have a look at how much variance our principal components explain. First, we need to convert
our eigenvectors into percentages of variance explained.

eig <- dogs_pca$eig
# calculate percentage of variance explained
eig <- (eig/sum(eig))*100

From examining eig, we can see how much variance each principal component explains. So for example,
PC1 explains 4.59% of the variance and PC2 3.04%. Each PC cumulatively explains more of the vairance until
all 100% of it is explained. You can see this by running sum(eig) and seeing that the total is 100.

A total of 7.63% for the first two vectors sounds small, but it is actually quite an appreciable amount of
variance. Typically, we would concentrate on the PC components that together account for at least 10% of the
variance.

Visualising the PCA

Plotting a PCA is the best way to properly interpret it, so we will do this now. The first thing we should do is
extract the principal component scores from the data:

# create an 1id vector

id <- row.names(dogs_pca$scores)

# get the pc scores - only the first two for now
pc <- dogs_pca$scores[, 1:2]

# make a tibble

my_pca <- as.tibble(data.frame(id, pc))

## Warning: “as.tibble()’ is deprecated, use “as_tibble()" (but mind the new semantics).
## This warning is displayed once per session.
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We can then easily plot this using ggplot .

# plot with ggplot2
ggplot(my_pca, aes(PCl, PC2)) + geom_point() + theme_light()
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OK - so this plot looks interesting, but it is lacking some key information - namely we should colour the points
by their location so we can actually have some hope of understanding it. To do this, we need information on
the location that the dogs are sampled. Luckily, we have prepared that for you and you can download it here
(https://evolutionarygenetics.github.io/village_dogs.tsv). Then read it in like so:

# read in village dog data
village data <- read_delim("./village dogs.tsv", delim = "\t")

Take a moment to look at this. It has three columns, id, breed and location.Our my_pca object also has
an id column, so we need to join the two datasets. Luckily, this is really easy with a tidyverse function called
left_join:

# join pca and village dog data
village pca <- inner_join(village data, my_pca, by = "id")

Now we can easily plot the PCA using ggplot and at the same time, colour the points by the location they
were sampled in.

# plot with ggplot2
a <- ggplot(village pca, aes(PCl, PC2, colour = location)) + geom_point() + theme_light()
a + theme(legend.position = "bottom")
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So from this PCA, what can we deduce? Well an immediate obvious pattern is that dogs from Central and
Eastern Asia are quite divergent from other geographic locations. Similarly, African and European dogs seem
to form their own clusters. In the original paper, Shannon et al. (2015)
(http://www.pnas.org/content/112/44/13639) suggest that the origin of dog domestication might actually be in
Central Asia. This is hard to deduce from the PCA but it is clear that there is geographical structure among
village dogs.

The picture may be even clearer if we use the full dataset. Since this is very large, we cannot perform this PCA
in R. However, we have conducted this for you and you can find the full PCA dataset here
(https://evolutionarygenetics.github.io/full_village_dogs_pca.tsv). You can also find the eigenvectors here
(https://evolutionarygenetics.github.io/full_village.eigenval). To give you a head start, you can read in the
eigenvalues like so:

full village eigenval <- scan("./full village.eigenval")

Study questions

For study questions on this tutorial, download the Chapter9 R_questions.R from Canvas or find it here
(https://evolutionarygenetics.github.io/Chapter9_R_questions.R).

Going further

« A short tutorial on phylogenetics in R and also with some comparative phylogenetic functions
(http://www.phytools.org/eqg/Exercise_3.2/)

« Going further with phylogenetics in R - plus links to other tutorials
(https://lwww.molecularecologist.com/2016/02/quick-and-dirty-tree-building-in-r/)
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