Dr. Simge Aykan

Department of Physiology

- Biological process by which a neuron communicates with a target cell across a synapse
- *Synapse* is an anatomically specialized junction between two neurons, at which the electrical activity in a presynaptic neuron influences the electrical activity of a postsynaptic neuron
- Synapse can be between a neuron and a
 - Neuron
 - Muscle
 - Gland cell

- The average neuron forms several thousand synaptic connections and receives a similar number
 - The Purkinje cell of the cerebellum receives up to 100,000 synaptic inputs
- 10¹¹ neurons, 10¹⁴ (100 trillion!) synapses

- *Electrical synapse transmission*: transfer of electrical signals through gap junctions
- Chemical synaptic transmission: release of a neurotransmitter from the pre-synaptic neuron, and neurotransmitter binding to specific post-synaptic receptors

- Connection through gap junctions
 - Narrow gap between membranes (3 nm)
 - Connexin \rightarrow connexon \rightarrow gap junction
 - Direct ion passage from one neuron to another
 - Big enough for many small organic molecules to pass through (1-2 nm)
 - Mostly between dendrites

• Electrical postsynaptic potential (PSP) induced by ionic current flow (1 mV or less)

- Advantages
 - Extremely rapid
 - Orchestrating the actions of large groups of neurons
 - Can transmit metabolic signals between cells

- Less common in vertebrate nervous system
 - Require a large area of contact; restricting number of synaptic inputs
 - Cannot be inhibitory

- Found where normal function requires that the activity of neighbouring neurons be highly syncronized
 - During prenatal and postnatal brain development, neigbouring cells share both electrical and chemical signals to coordinate their growth and maturation
 - Hormone-secreting neurons within the hypothalamus to facilitate a burst of hormone secretion into the circulation

Chemical Synapses

- No structural continuity
 - Synaptic cleft (20-40 nm)
 - Diffusion of neurotransmitters
- Presynaptic terminals contain 100 to 200 synaptic vesicles, each filled with several thousand molecules of the neurotransmitter
- The synaptic vesicles are clustered at *active zone*s

Chemical Synapses

• Cell Adhesion Molecules (CAMs)

- proteins in the pre- and postsynaptic membranes that project from these membranes into the synaptic cleft, where they bond to each other
- Ensures that the pre- and postsynaptic membranes stay in close proximity for rapid chemical transmission

Presynaptic Terminal

- Terminal boutons
- Voltage-gated Ca²⁺ channels
- Ca²⁺ influx
- Fusion of vesicles
 - Synaptic vesicles (neurotransmitter)
 - Secretory granules (neuropeptides)
- Exocytosis

Presynaptic Terminal

- Vesicles are docked in the active zones by the interaction of proteins
 - SNAREs
- Ca²⁺ interaction with synaptotagmin
- Conformation change in the SNARE complex
- Membrane fusion

- Botulinum toxins targets excitatory synapses that release ACh as a neurotransmitter and digests one of the SNAREs
- Muscles are unable to contract (flaccid paralysis)

Presynaptic Terminal

- Vesicles completely fuse with the membrane and are later recycled by endocytosis from the membrane at sites outside the active zone
- At synapses with high action potential firing frequencies, vesicles fuse briefly then reseal the pore and withdraw back into the axon terminal ("kiss-and-run fusion")

Synaptic Cleft

- Neurotransmitter diffusion
- 20-40 nm
- Neurotransmitters rapidly and reversibly bind to receptors on the plasma membrane
 - Bound ligand is in equilibrium with the unbound form

Synaptic Cleft

- Unbound neurotransmitters are removed from the synaptic cleft
 - 1. actively transported back into the presynaptic axon terminal for reuse (reuptake)
 - 2. transported into nearby glial cells where they are degraded (astrocytes)
 - 3. diffuse away from the receptor site
 - 4. enzymatically transformed into inactive substances

Postsynaptic Terminal

- Postsynaptic density: area with high protein accumulation under the postsynaptic membrane (receptors)
- Neurotransmitter receptors: convert intercellular chemical signal (i.e., neurotransmitter) into an intracellular signal (i.e., a change in membrane potential or a chemical change)

Postsynaptic Neuron

 Synaptic delay (at least 0.3 msec) between the arrival of an action potential at a presynaptic terminal and the membrane potential changes in the postsynaptic cell

Types of Synaptic Contacts

- Axodendritic: Axon to dendrite
- Axosomatic: Axon to cell body
- Axoaxonic: Axon to axon
- Dendrodendritic: Dendrite to dendrite

CNS Synapses

- Excitatory synapses
 - Gray's type I morphology, Asymmetrical
 - Spines: Excitatory synapses
- Inhibitory synapses
 - Gray's type II morphology, Symmetrical
 - Clustered on soma and near axon hillock

Synapses Vary in Size and Strength

 Larger synapses allow the presynaptic neuron to have a larger and more reliable effect on the postsynaptic neuron

- All receptors for chemical transmitters have two biochemical features in common:
 - 1. They are membrane-spanning proteins. The region exposed to the external environment of the cell recognizes and binds the transmitter from the presynaptic cell.
 - 2. They carry out an effector function within the target cell. The receptors typically influence the opening or closing of ion channels.

Ionotropic receptors

- Ion channels
- Direct change in ion movement across the plasma membrane of postsynaptic cell
- Fast, short-lived responses

Metabotropic receptors

- Not ion channel
- Induce signalling cascade in the postsynaptic cell that leads to changes in ion channels
- Slow and longer-lived responses

Autoreceptors and Presynaptic Inhibition

- Receptors are sometimes found on the presynaptic terminal.
- Activation leads to:
 - Inhibition of neurotransmitter release
 - Neurotransmitter synthesis.
- Autoreceptors may act as a brake on the release of neurotransmitters

Postsynaptic Receptors Gate Ion Channels Either Directly or Indirectly

- *Ionotropic receptors:* the receptor undergoes a conformational change that opens the channel.
- *Metabotrobic receptors:* alter intracellular metabolic reactions. Production of second messengers (cAMP, DAG), activates protein kinases (PKA) that phosphorylates ion channels, leading to their opening or closing

- Ionotropic receptors
 - produce relatively fast synaptic actions lasting only milliseconds
 - found at synapses in neural circuits that mediate rapid behaviors, (e.g., stretch receptor reflex)
- Metabotropic receptors
 - produce slower synaptic actions lasting seconds to minutes
 - can modulate behavior by altering the excitability of neurons and the strength of the synaptic connections of the neural circuitry mediating behavior, (e.g., learning)

- For ions, transmitter-gated channels are not as selective as voltagegated channels.
 - ACh-gated ion channels at the neuromuscular junction are permeable to both Na⁺ and K⁺
- If the open channels are permeable to Na⁺, the net effect will be to depolarize the postsynaptic cell from the resting membrane potential

- Both electrical and concentration gradients drive Na+ into the cell, whereas for K+ , the electrical gradient opposes the concentration gradient
- Opening channels that are permeable to both ions results in the simultaneous movement of a relatively small number of potassium ions out of the cell and a larger number of sodium ions into the cell
- The net movement of positive ions is into the postsynaptic cell, causing a slight depolarization.

Postsynaptic Potentials

- Excitatory postsynaptic potential (EPSP) a transient postsynaptic membrane depolarization
- EPSP is a depolarizing graded potential that decreases in magnitude as it spreads away from the synapse by local current

Postsynaptic Potentials

- Inhibitory postsynaptic potential (IPSP) a transient postsynaptic membrane hyperpolarization
- Activated receptors on the postsynaptic membrane open Cl⁻ or K⁺ channels

Neuropharmacology

- Effect of drugs on nervous system tissue
- *Receptor antagonists*: Inhibitors of neurotransmitter receptors
 - Curare
- *Receptor agonists*: Mimic actions of naturally occurring neurotransmitters
 - Nicotine
- Defective neurotransmission: Root cause of neurological and psychiatric disorders

Termination of Neurotransmitter Signaling

- After a response is triggered, the chemical synapse returns to its resting state
- The neurotransmitter molecules are cleared from the synaptic cleft
 - Enzymatic clearence
 - Diffuse away from the cleft
 - Active transport back to the presynaptic terminal