Molecular structure of skeletal muscle and function of nerve-muscle junction

Dr. Simge Aykan

Department of Physiology

Skeletal Muscle

- Muscle fiber
 - Fusion of undifferentiated myoblasts into a single multinucleated cell during development
 - Each nucleus participates in regulation of gene expression and protein synthesis within its local domain
 - Differentiation completed around birth
 - Increase in size from infancy to adulthood

• Satellite cells

- Undifferentiated stem cells
- Between the plasma membrane and surrounding basement membrane
- Differentiation to myoblast

Skeletal Muscle

Muscle

 a number of skeletal muscle fibers bound together by connective tissue

• Tendon

• Bundles of connective tissue consisting of collagen fibers

Thick filament

- Myosin
- Two globular heads and a long tail
- Cross-bridge: contact with thin filament and exert force during contraction
- Actin binding site: attachment to actin
- ATP binding site : myosin-ATPase

Thin filaments

- Actin, nebulin, troponin, tropomyosin
 - Actin: two interwined, helical chains. Core of the thin filament. Binding site for myosin
 - Nebulin: thin filament assembly
 - Troponin & Tropomyosin: regulation of contraction

Sarcomere

- One unit of repeating pattern of thick and thin filaments
 - A band: thick filaments
 - *Z line*: network of interconnecting proteins
 - I band: thin filaments only
 - *H zone*: space between opposing ends of the thin filaments
 - *M line*: proteins that link the central region of thick filaments

- Sarcoplasmic retikulum
- Terminal cisternae (lateral sacs)
 - Calsequestrin :Ca²⁺ binding element
 - Storage of large quantitiy of Ca²⁺
- Transverse tubules (T-tubules)
 - Associated with terminal cisternae
 - Continous with the plasma membrane
 - Action potential propogation to interior of the muscle
 - Continous with extracellular fluid

Contraction

 Activation of the forcegenerating sites within muscle fiber (the cross-bridges)

Neuromuscular junction

- Alpha motor neurons
 - Cell bodies in brainstem and spinal cord
 - Myelinated, largest diameter axons
 - High velocity action potential propagation (minimal delay)

Motor Unit

- A motor neuron and innervated muscle fibers
 - Located in one muscle
 - Distributed throughout the muscle
 - All fibers stimulated at once
- The number of fibers innervated by a single motor neuron varies (from a few to thousand)
 - The fewer the number of fibers per neuron
 - the finer the movement

Neuromuscular junction

- Acetylcholine (ACh)
- Motor end plate

Neuromuscular junction

- Action potential
- Ca²⁺ entry
- Acetylcholine release
- Nicotinic Ach receptors open (Na and K Channel)
- Na⁺ entry
- End-plate potential (EPP)

End plate potential

- Transmission is fast and reliable
 - An action potential in the motor axon always causes an action potential in the muscle cell it innervates
 - One of the largest synapses in the body
 - The postsynaptic membrane of the folds is packed with neurotransmitter receptor
 - Single action potential in the presynaptic terminal triggers the exocytosis of about 200 synaptic vesicles, causing an EPSP of 40 mV or more

End plate potential

- Local currents
 - Similar to unmiyelinated axons
 - Propogation in both directions
- Muscle fiber action potential initiation
- Voltage gated Na⁺ channels open

Termination of signal

- ACh Acetylcholineesterase Acetate + Choline
- Less ACh
- Less binding to receptor
- End of EPP

Organophosphates

- Inhibits AChE
- Channels stay open
 - maintained depolarization of the end plate
- Can not produce action potentials
 - the voltage-gated Na+ channels in the membrane become inactivated, which requires repolarization to reverse
- Desensitization of ACh receptors
 - Current stops entering
 - Na+ channels rectivated
 - Loss of receptor responsiveness to ACh causes skeletal muscle paralysis and death from asphyxiation