Mechanisms of smooth muscle contraction and relaxation and latch mechanism

Simge Aykan

Department of Physiology

- Thin filaments are attached to plasma membrane or dense bodies (analogous to Z line)
- Filaments are oriented diagonally to the long axis of the cell
 - During shortening plasma membrane regions between attachment points balloon out

- Sliding-filament mechanism
 - Less myosin, more actin
 - No regular alignment
 - Maximal tension developed by smooth muscles is similar to that of skeletal muscle
- The isometric tension produced by smooth muscle fibers varies with fiber length
 - Tension development is highest at intermediate lengths and lower at shorter or longer lengths
 - Significant force is generated over a relatively broad range of muscle lengths compared to that of skeletal muscle

Excitation-Contraction Coupling in Smooth Muscles

- The contraction of smooth muscles is triggered by a sharp rise in the Ca²⁺ concentration within the cytoplasm
 - calcium-induced calcium release
 - Sustained smooth muscle contraction
 - inositol triphosphate (IP3) produced at the plasma membrane due to stimulation by a hormone

- Changes in cytosolic Ca²⁺ concentration
- Cross-bridge cycling in smooth muscle is controlled by a Ca²⁺-regulated enzyme that phosphorylates myosin
 - Ca²⁺-calmodulin myosin light chain kinase
- Only the phosphorylated form of smooth muscle myosin can bind to actin and undergo cross-bridge cycling

Sliding Filaments Mechanism

- 1. Ca²⁺ binds to calmodulin
- 2. The Ca²⁺–calmodulin complex binds to myosin light-chain kinase (MLCK), activates the enzyme
- 3. Active myosin light-chain kinase then uses ATP to phosphorylate myosin light chains in the globular head of myosin
- 4. Phosphorylation of myosin drives the crossbridge away from the thick filament backbone, allowing it to bind to actin
- 5. Cross-bridges go through repeated cycles of force generation as long as myosin light chains are phosphorylated

- ATP hydrolysis determines the rate of cross-bridge cycling and shortening velocity
- Smooth muscle myosin has very low rate of ATPase activity
 - 10-100 times less than skeletal muscle
 - Much slower muscle shortening
 - Because of slow rate of energy usage, smooth muscles does not undergo fatigue

Smooth Muscle Relaxation

- Myosin light-chain phosphatase (MLCP)
 - myosin dephosphorylation
 - continuously active
- Relaxation or contraction depends on the ratio between kinase and phosphotase
 - i.e. Cytosolic Ca²⁺
- Latch state
 - when stimulation is persistent and the cytosolic Ca²⁺ concentration remains elevated, the rate of ATP hydrolysis by the cross-bridges declines even though isometric tension is maintained
 - sphincter muscles of the gastrointestinal tract (prolonged contraction)
 - tension can be maintained in an almost rigor-like state without movement
 - Much slow dissociation of cross-bridges from actin

Sources of Cytosolic Ca²⁺

- 1. the sarcoplasmic reticulum
- 2. extracellular Ca²⁺ entering the cell through plasma membrane Ca²⁺ channels

Sarcoplasmic reticulum

- Smaller in smooth muscle
- No T-tubules
 - Small cell diameter and slow rate of contraction
- Attached membrane at some sites (action potentials are coupled to Ca²⁺ release)
- Second messanger related Ca²⁺ release in some types (coupled to extracellular signals)

Extracellular calcium

- Voltage-sensitive and ligand gated Ca²⁺ channels in the plasma membranes of smooth muscle cells
 - Increased flow into the cell

Ca²⁺ Removal

- Active transport of Ca²⁺ back into the sarcoplasmic reticulum and out of the cell (slower → longer contraction)
- Only a portion of the cross-bridges are activated in a smooth muscle fiber in response to most stimuli
 - Graded tension
- Smooth muscle tone
 - the cytosolic Ca²⁺ concentration is sufficient to maintain a low level of basal cross-bridge activity in the absence of external stimuli

Membrane Activation

- Receives multiple inputs, with the contractile state of the muscle dependent on the relative intensity of the various inhibitory and excitatory stimuli
- All changes Ca²⁺ concentration
- Ca²⁺ mediated action potentials
- Graded depolarizations (or hyperpolarizations) in membrane potential, depende on the number of open Ca²⁺ channels