CHM0308 INORGANIC CHEMISTRY II

SOLIDS

CLASSIFICATIONS OF SOLIDS

There are two main categories of solids: Crystalline and amorphous.

Crystalline solids

- have atoms arranged in an orderly repeating pattern
- > are well ordered at the atomic level
- ➤ have a specific geometric shape
- > have a constant melting point

Ex: glass, rubber, plastic

Amorphous solids

- > lack the order found in crystalline solids
- > are disordered
- ► do not have a specific geometric shape
- \triangleright do not have a certain melting point, become fluent in a certain temperature range called as the glass transition temperature (T_g)

Ex: NaCl, Cu, Ar

CHM0308 INORGANIC CHEMISTRY II

CLASSIFICATIONS OF CRYSTALS

- 1. According to the unit cell type
- 2. According to the structural units in the lattice points
- 3. According to the occupying of atoms into the cavities

CRYSTAL TYPES DEPENDING ON THE UNIT CELL TYPE

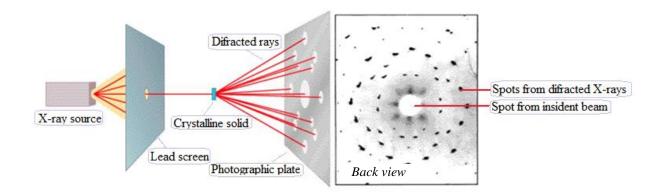
The unit cell is a relatively small repeating unit that is made up of a unique arrangement of atoms and embodies the structure of the solid.

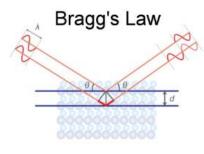
	$a \xrightarrow{\beta} \alpha$,	
CUBIC	a=b=c	$\alpha=\beta=\gamma=90^{\circ}$	Primitive Body-centered Face-centered
TETRAGONAL	<i>a=b≠c</i>	$\alpha=\beta=\gamma=90^{\circ}$	Primitive Body-centered
ORTHORHOMBIC	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	Primitive Body-centered Face-centered Base-centered
RHOMBOHEDRAL	<i>a</i> = <i>b</i> = <i>c</i>	$\alpha = \beta = \gamma \neq 90^{\circ} < 120^{\circ}$	
HEXAGONAL	<i>a=b≠c</i>	$\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$	
MONOCLINIC	a≠b≠c	α=β=90°, γ≠120°	Primitive Base-centered
TRICLINIC	a≠b≠c	$\alpha \neq \beta \neq \gamma \neq 90^o$	

PROF. DR. SELEN BILGE KOÇAK CHM0308 INORGANIC CHEMISTRY II

CRYSTAL TYPES DEPENDING ON THE STRUCTURAL UNITS IN THE LATTICE POINTS

There are four different types of crystalline solids:


- 1. Metallic solids
- 2. Ionic solids
- 3. Covalent solids
- 4. Molecular solids


	Structural Unit in the Lattice Point	Properties	Examples
Covalent solids	Covalently bonded atom	Hard, high melting and boiling points	Diamond, graphite
Ionic solids	(+) and (-) charged ions [electrostatic force (pull force)]	Hard, high melting and boiling points	NaCl, KBr, LiF
Metallic solids	Metal cations in the electron cloud [electrostatic force]	Variable hardness, melting and boiling points, conductive	Au, Ag, Cu, Fe
Molecular solids	Molecules (dipol-dipol and Van der Waals interactions)	Soft, low melting and boiling points, nonconductive	H ₂ O, naphthalene, sulfur, sugar

CHM0308 INORGANIC CHEMISTRY II

CLARIFICATIONS OF CRYSTAL STRUCTURES USING X-RAY CRYSTALLOGRAPHY

X-ray crystallography is the technique used to determine the crystal structure of crystalline solids (known or unknown) based on their diffraction pattern.

 $n\lambda = 2d \cdot \sin\theta$

IN BRAGG EQUATION

n is an integer

the variable λ is the characteristic the wavelength of the incident X-rays impinging on the crystallize sample the variable d is the distance between atomic layers in a crystal

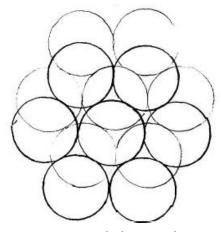
heta is the angle of the X-ray beam with respect to these planes

CHM0308 INORGANIC CHEMISTRY II

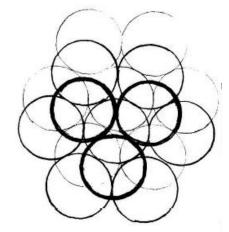
IONIC SOLIDS

Radius Ratio (r+/r-)

The radius ratio can be calculated if ionic radii are known, coordination number and geometric structure can be defined.


Radius ratio (r+/r-)	Coordination number	Geometry
< 0.155	2	Linear
0.155-0.225	3	Trigonal planar
0.225-0.414	4	Tetrahedron
0.414-0.732	4	Square planar
0.414-0.732	6	Octahedron
0.732-0.999	8	Body-centered cubic

Crystal Faults


In many crystals, some unit cells are empty or some unit cells are shifted.

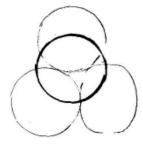
Close Packing

The gap ratio is possible in two different ways, provided that it remains the same: 1) Cubic close packing. 2) Hexagonal close packing.

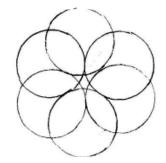
Hexagonal close packing

Cubic close packing

CHM0308 INORGANIC CHEMISTRY II


Close packing also includes 3 types of cavities:

- 1. Tetrahedral cavities
- 2. Octahedral cavities
- 3. Cubic cavities

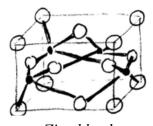

Tetrahedral cavities: The cavity formed by the contact of four spheres.

Octahedral cavities: The cavity formed by six spheres.

Cubic cavities: In most ionic crystals, the larger ion (usually anion) forms one of the primitive, body-centered or face-centered cubic lattices as sub-lattices. Cations fill the cavities of these lattices.

Tetrahedral cavity

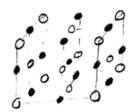
Octahedral cavity

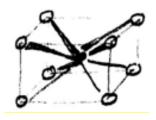

Formula	Example	Type of close packing	The occupancy of cavities		Coordination
			Tetrahedral	Octahedral	number
AX	NaCl	ccp	-		6:6
	NiAs	hcp	-		6:6
	ZnS (zinc blende)	сср	$^{1}/_{2}$	-	4:4
	ZnS (wurtzite)	hcp	$^{1}/_{2}$	-	4:4
AX_2	CaF_2	ccp		-	4:8
	CdI_2	hcp	-	$^{1}/_{2}$	6:3
	$CdCl_2$	сср	-	$^{1}/_{2}$	6:3
	β -ZnCl ₂	hcp	$^{1}/_{4}$	-	4:2
	HgI_2	ccp	$^{1}/_{4}$	-	4:2
AX_3	BiI_3	hcp	-	1/3	6:2
	$CrCl_3$	ccp	-	1/3	6:2
AX_4	SnI_4	hcp	1/8	-	4:1
AX_6	α-WCl ₆ , UCl ₆	сср	1/8	$^{1}/_{6}$	6:1
A_2X_3	Al_2O_3 (corundum)	hcp		$^{2}/_{3}$	6:4

CHM0308 INORGANIC CHEMISTRY II

CRYSTAL TYPES DEPENDING ON THE CHOICE OF ATOMS TO FILL IN CAVITIES (CLASSIFICATION OF IONIC STRUCTURES)

AX TYPE COMPOUNDS

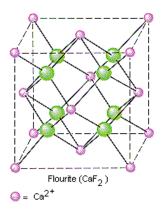

a. Zinc sulfide structure


Wurtzite

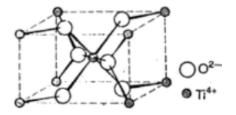
Zinc blende

b. Sodium chloride structure (rock salt, halite)

c. Cesium chloride structure



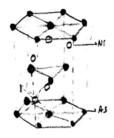
	CsCl	NaCl	ZnS
r^+ (Å)	1.81	1.16	0.88
r - (Å)	1.67	1.67	1.70
r^+/r^-	1.08	0.69	0.52
Coordination number of cation	8	6	4
Coordination number of anion	8	6	4

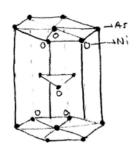

CHM0308 INORGANIC CHEMISTRY II

AX₂ TYPE COMPOUNDS

a. Calcium Floride (Fluorite) Structure

b. Rutile Structure


c. 6-cristobalite (silica) structure


Silica (SiO₂) has six crystal structures called quartz, cristobalite and tridimide, each of which has an α and β form. The radius ratio indicates the coordination number is 4 and the cytokiometry is 4:2.

CHM0308 INORGANIC CHEMISTRY II

LAYERED STRUCTURES

- a. Cadmium iodide structure
- b. Cadmium chloride structure
- c. Nickel arsenide structure

STRUCTURES CONTAINING POLYATOMIC IONS

OTHER LATTICES

CRYSTAL LATTICE DEFECTS

- 1. Lattice blanks
- 2. Lattice cracks
- 3. f-Centered crystals
- 4. Crystal impurities

FACTORS DETERMINING THE TYPE OF LATTICE

- 1. Stoichiometry
- 2. Radius ratio
- 3. Covalent character