PROF. DR. SELEN BİLGE KOÇAK CHM356 INORGANIC CHEMISTRY LABORATORY

EXPERIMENT NUMBER	14
THE NAME OF THE EXPERIMENT	CARBONATOTETRAAMMINE
	COBALT(III) NITRATE
FORMULA	[Co(NH ₃)CO ₃]NO ₃

EXPERIMENTAL PROCEDURE

In a 100 mL flask, 20 g (0.21 mole) of $(NH_4)_2CO_3$ is dissolved in 60 mL of water, and 60 mL of concentrated ammonia solution is added to the flask. 15 g (0.052 mole) of $Co(NO_3).6H_2O$ in another beaker is dissolved in 30 mL of water. The previously prepared solution is added to this solution by mixing. Then, 8 mL of 30% H_2O_2 solution is added to this solution. The solution is evaporated to a final volume of 90-100 mL (without boiling). 5 g of $(NH_4)_2CO_3$ is added several times to the solution during evaporation. The hot solution is filtered and filtered. $[Co(NH_3)CO_3]NO_3$ precipitate is washed with a few mL of water, then with ethanol.

QUESTIONS

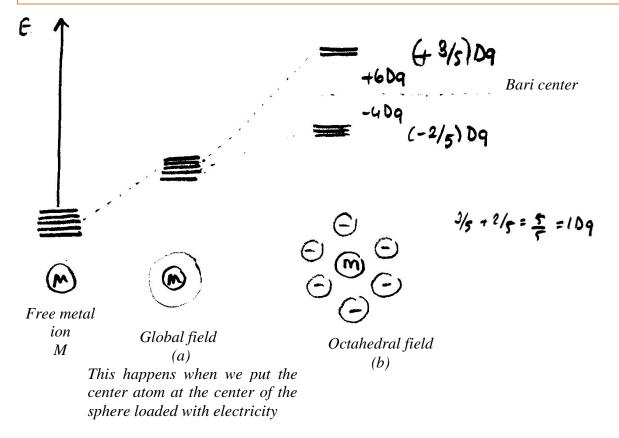
- **1**. Write and balance the chemical equation.
- 2. Write the open formula of the complex, explain the hybridization type of the central atom. What can be said about its magnetic properties?
- 3. Write the Lewis formulas of NH_4^+ and CO_3^{2-} ions and specify the hybridization types of the central atoms.
- 4. Explain why H_2O_2 is used in the experiment.

PROF. DR. SELEN BİLGE KOÇAK CHM356 INORGANIC CHEMISTRY LABORATORY

15
CHLOROPENTAAMMINE
COBALT(III) CHLORIDE
$[Co(NH_3)_5Cl]Cl_2$

EXPERIMENTAL PROCEDURE

5 g of [Co(NH₃)₄.CO₃]NO₃ is dissolved in 50 ml of water and 5-10 mL of concentrated HCl acid is added until all CO₂ is removed. The solution is neutralized with concentrated NH₃ solution and then 5 mL excess of ammonia is added. The solution is heated 20 minutes without boiling, [CO(NH₃)5.H₂O]³⁺ occurs. The solution is slightly cooled and 75 mL of concentrated HCl acid is added to the solution. The solution is heated 20-30 minutes again, meanwhile change in color is observed. When the solution is cooled to room temperature, purple-red crystals are observed. Crystals are washed several times with ice-cold water and filtered in a vacuum, washed with several mL of ethanol, and are dried at 120 °C.


QUESTIONS

- **1.** Write and balance the chemical equation.
- 2. Show the crystal field splitting in [Co(NH₃)₅Cl]Cl₂ complex.
- 3. What can you say about the magnetic moment of the complex?
- 4. Is isomer observed in the complex, why?
- 5. Draw the crystal field splitting diagrams for $[Co(NH_3)_6]^{3+}$ and $[Co(NH_3)_6]^{2+}$ complexes. Find the magnetic moments of the complexes. Which complex is more stable, why?

PROF. DR. SELEN BILGE KOÇAK CHM356 INORGANIC CHEMISTRY LABORATORY

GENERAL INFORMATION

In the octahedral field, ligands approach the central atom in the direction of the x, y, z axes. Therefore, the ligands interact more with d-orbitals $(d_{x2-y2} \text{ and } d_{z2})$ on the x, y, z axes. As a result, the d_{x2-y2} and d_{z2} orbitals on the axes increase their energies as they interact more with ligands (negative charges). In contrast, the energies of the d_{xy} , d_{xz} and d_{yz} orbitals between the axes are reduced so that the total energies of the orbitals remain the same. Briefly, under the influence of an octahedral field, the d orbitals split into triply degenerate orbitals (t_{2g}) with less energy and another as doubly degenerate orbitals (e_g) with higher energy. The main energy level between these two sets of orbitals is taken as zero, which is called **Bari center**. The splitting between these two orbitals is called crystal field splitting (Δ_o) . $_o$ at Δ_0 indicates that the split is in the octahedral field. The crystal field splitting energy or crystal field stabilization is indicated by $\Delta_o=10Dq$.