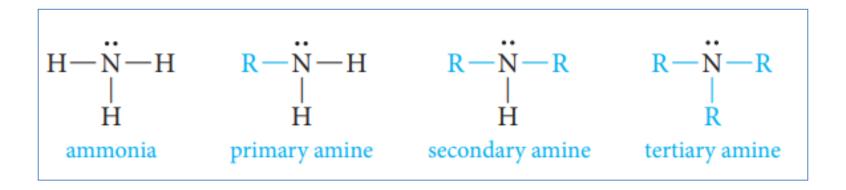
PHA284 Organic Chemistry II

Ankara University
Faculty of Pharmacy
Department of Pharmaceutical Chemistry


AMINES

AMINES

 $R-NH_2$

Classification of Amines

Amines are organic bases derived from ammonia.

Nomenclature

 $\begin{array}{cccc} CH_3CH_2NH_2 & (CH_3CH_2)_2NH & (CH_3CH_2)_3N \\ & \text{ethylamine} & \text{diethylamine} & \text{triethylamine} \\ & (\text{primary}) & (\text{secondary}) & (\text{tertiary}) \end{array}$

Physical Properties

Physical State:

- Methylamine and ethylamine are gases,
- Primary amines with three or more carbons are liquids.
- Small members have typical ammonia smell.

Physical Properties

Solubility:

- All three classes of amines can form hydrogen bonds with the -OH group of water (that is, O-H···N).
- Primary and secondary amines can also form hydrogen bonds with the oxygen atom in water: $N-H\cdot\cdot\cdot O$.
- Thus, most simple amines with up to five or six carbon atoms are either completely or appreciably soluble in water.

Basicity of Amines

$$\frac{1}{1}N : + H - \frac{1}{1}OH \Longrightarrow N^{+} - H + - \frac{1}{1}OH$$
amine
$$\frac{1}{1}N : + H - \frac{1}{1}OH \Longrightarrow N^{+} - H + - \frac{1}{1}OH$$
amine
$$\frac{1}{1}N : + H - \frac{1}{1}OH \Longrightarrow N^{+} - H + - \frac{1}{1}OH$$
amine
$$\frac{1}{1}N : + H - \frac{1}{1}OH \Longrightarrow N^{+} - H + - \frac{1}{1}OH$$
amine
$$\frac{1}{1}N : + H - \frac{1}{1}OH \Longrightarrow N^{+} - H + - \frac{1}{1}OH$$
amine
$$\frac{1}{1}N : + H - \frac{1}{1}OH \Longrightarrow N^{+} - H + - \frac{1}{1}OH$$

Amines are more basic than water. They accept a proton from water, producing hydroxide ion, so their solutions are basic.

Basicity of Amines

Alkylamines are approximately 10 times as basic as ammonia.

<u>Amine</u>	<u>рК</u> _b
NH ₃	4.70
CH ₃ NH ₂	3.36
$(CH_3)_2NH 3.29$	
$(CH_3)_3N$	4.23

i. Alkylation of ammonia and amines:

ii. Reduction of nitrogen compounds:

iii. Reduction of ciyanides:

$$R - C \equiv N \xrightarrow{LiAlH_4} RCH_2NH_2$$

iv. Reductive amination:

$$C=O + NH_3 \xrightarrow{H_2/Ni} CH-NH_2 + H_2O$$
 $C=O + RNH_2 \xrightarrow{H_2/Pt} CH-NH-R + H_2O$
 $C=O + R-NH-R \xrightarrow{H_2/Pd} CH-N \xrightarrow{R} + H_2O$

i. Addition to aldehydes and ketones:

 Other ammonia derivatives containing an -NH₂ group react with carbonyl compounds similarly to primary amines.

Table . Nitrogen Derivatives of Carbonyl Compounds			
Formula of ammonia derivative	Name	Formula of carbonyl derivative	Name
RNH ₂ or ArNH ₂	primary amine	C=NR or C=NAr	imine
NH ₂ OH	hydroxylamine	C=NOH	oxime
NH ₂ NH ₂	hydrazine	C=NNH ₂	hydrazone
NH ₂ NHC ₆ H ₅	phenylhydrazine	C=NNHC ₆ H ₅	phenylhydrazone

Reaction with acids:

Amines react with acids to form alkyl ammonium salts.

$$R-NH_2 + HCl \longrightarrow RNH_3 Cl^-$$
primary amine an alkylammonium chloride

Acylation with acid derivatives:

$$\begin{array}{c} O \\ R - C - Cl + HN \\ R'' \end{array} \longrightarrow \begin{array}{c} R' \\ R - C - N \\ R'' \end{array} + \begin{array}{c} R' \\ + HCl \\ R'' \end{array}$$
acyl halide
$$\begin{array}{c} \text{secondary} \\ \text{amine} \end{array}$$
tertiary amide

Reaction of amine hydrogen

Mannich Reaction (Amino methylation)

Reaction with nitrous acid

Alkenes, alcohols, alkyl halides

Reaction with nitrous acid

$$(CH_3)_2\ddot{N}H + HCI + NaNO_2 \xrightarrow{(HONO)} (CH_3)_2\ddot{N}-\ddot{N}=O$$

Dimethylamine

N-Nitrosodimethylamine
(a yellow oil)

Oxidation:

Quaternary Ammonium Compounds

Quaternary Ammonium Compounds

 Tertiary amines react with primary or secondary alkyl halides and the products are quaternary ammonium salts.

Preparation

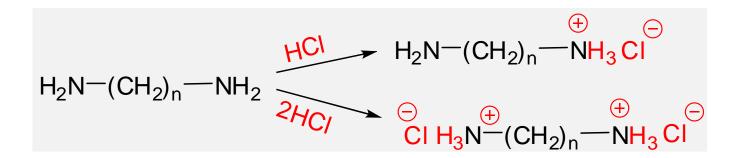
DIAMINES

$$H_2N$$
- CH_2 - CH_2 - NH_2

ethane-1,2-diamine 1,2-diamino ethane

Preparation

1) Nucleophilic substitution

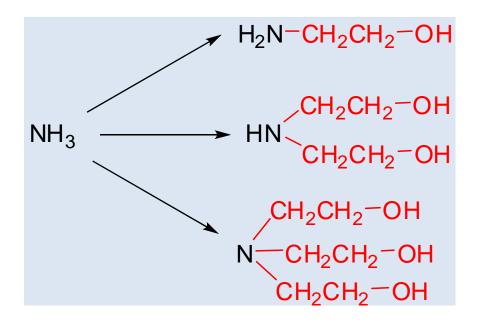

$$^{H}_{2 H-N}$$
 + Br-CH₂CH₂-Br \longrightarrow H₂N-CH₂CH₂-NH₂ + 2 HBr

2) Hydrogenation of nitriles:

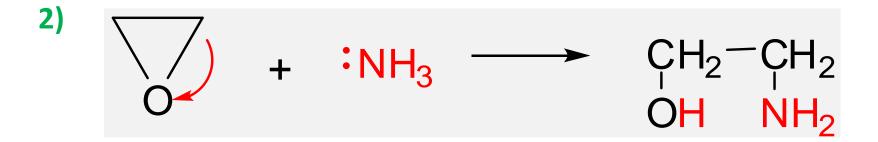
$$N \equiv C - (CH_2)_n - C \equiv N \xrightarrow{4H_2/Pd} H_2N - CH_2 - (CH_2)_n - CH_2 - NH_2$$

Reactions

Basicity


Amino Alcohols

2-aminoethan-1-ol Ethanolamine


$$H_3C$$

 $N-CH_2-CH_2-CH_2-OH$
 H_3C

3-(dimethylamino)propan-1-ol

Preparation

Preparation

References

- *Organic Chemistry 11e*, T.W. Graham Solomons, Craig B. Fryhle, Scott A. Snyder, John Wiley & Sons, Inc., 2014, ISBN 978-1-118-13357-6 (cloth) Binder-ready version ISBN 978-1-118-14739-9
- Organic Chemistry: A Short Course, 13th Ed., D.J. Hart, C.M. Hadad, L.E.
 Craine, H. Hart, Brooks/Cole, Cengage Learning, 2012, ISBN-13: 978-1-111-42556-2
- Organic Chemistry, 6th Ed., L. G. Wade, Pearson Education, Inc., 2006, ISBN 0-13-147871-0
- Organic Chemistry, 2nd Ed., Jonathan Clayden, Nick Greeves, and Stuart Warren,, Oxford University Press, 2012, ISBN: 9780199270293
- *Organic Chemistry*, Mukherjee, S.M., et al., New Age International Ltd, 2008. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/ankara/detail.action?docID=3017383.