

Let's Recall

Homologous Series	Functional Group	Formula	General Formula (m≥0, n≥1)	Suffix	Example
Alkane	Alkyl	RH	C _n H _{2n+2}	-ane	Ethane
Alkene	Alkenyl	R ₂ C=CR ₂	C _n H _{2n}	-ene	Ethene
Alcohol	Hydroxyl	ROH	C _n H _{2n+1} OH	-ol	Methanol

What are Carboxylic Acids?

- Belong to a homologous series of organic compounds similar to alkanes, alkenes and alcohols
- The hydrocarbon chains contain the functional group -COOH (carbonyl group)

Naming the Carboxylic Acids

- Methanoic acid
- Total of one carbon atom (meth-)
- C₀H₁COOH

- Ethanoic acid
- Total of two carbons atoms (eth-)
- ■C₁H₃COOH

- Propanoic acid
- Total of three carbon atoms (propan-)
- C₂H₅COOH

*Take note of the functional group's location, highlighted by the dotted box

Naming Carboxylic Acids

Replace the 'e' with 'oic acid' at the end of the name of the hydrocarbon

Example:

Physical Properties of Ethanoic Acids

- * Similar to its alcohol:
 - Colourless liquid at room temperature & relatively low boiling point of 118°C
 - Completely *miscible* (able to dissolve) in water
- *Has a characteristic 'sour-ish' smell
- *Is a weak acid of pH 3

It's time to predict and discuss!

Are carboxylic acids the same as the acids we have learnt about in the chapter on acids and bases? Watch and observe!!

Video of demonstration

Chemical Properties of Carboxylic Acids

 As carboxylic acid is weak, its reactions produce the same outcomes as those learnt from the chapter of Acids, Bases and Salts

* But, the reactions are less vigorous

Weak acids (pH \approx 3).

Most of the acid molecules are unionised in water.

Reaction with **bases** *to form a salt and water

For example:

 $CH_3COOH + NaOH \longrightarrow CH_3COONa + H_2O$

Reaction with *reactive* **metals** *to form a salt and hydrogen

Reaction with **carbonates** *to form a salt, carbon dioxide and water

Uses of Carboxylic Acids

Ethanoic acid is the most important organic acid

It is used in vinegar as preservative and flavourings.

Other Important Organic Acids

Organic acid	Where it is found		
Lactic acid	Sour milk		
Oxalic acid	Rhubarb plant		
Citric acid	Limes, lemons		
Formic acid	Insect bites		
Tartaric acid	Grape juice		
Acetic acid	Vinegar		
Malic acid	Apples and pears		

Uses of Organic Acids

Making of drugs, dyes, paints, insecticides, plastics.

Making of esters.

Esterification

Carboxylic acids reacts with alcohols

- *to form esters
- In the presence of a few drops of concentrated sulphuric acid as catalyst

General equation:

acid + alcohol \longrightarrow ester + water

What are esters?

Have the general formula RCOOR'

How to name esters?

Alcohol + Carboxylic acid \rightarrow Ester + Water

Alkanol + Alkanoic acid \rightarrow Alkyl alkanoate + Water

$R'OH + RCOOH \rightarrow RCOOR' + H_2O$

Esterification

methanol + ethanoic acid ---- methyl ethanoate + water

 $CH_3OH + CH_3COOH - CH_3COOCH_3 + H_2O$

Esters

Chemical name	Molecular formula	Structural formula	Alcohol used	Organic acid used
methyl ethanoate	НСООН	H ₃ C CH ₃	methanol	ethanoic acid
ethyl ethanoate	CH₃COOH		ethanol	ethanoic acid

Time to watch and predict again!

Are esters acidic, neutral or basic?

Video of demonstration

Properties of esters

- Esters are neutral compounds with a sweet smell
- Colourless and insoluble in water

Uses of Esters

- Fruity flavours for perfumes, sweets, drinks and cakes
 - Artificial pineapple flavour is an ester made from ethanol and butanoic acid, called ethyl butanoate.
- Solvents for organic compounds, such as glues, varnishes and paints.

Summary

Homologous Series	Functional Group	Formula	General Formula (m≥0, n≥1)	Suffix	Example
Alkane	Alkyl	RH	C _n H₂n+2	-ane	Ethane
Alkene	Alkenyl	R ₂ C=CR ₂	C _n H _{2n}	-ene	Ethene
Alcohol	Hydroxyl	ROH	C _n H₂n+1OH	-ol	Methanol
Carboxylic acid	Carboxyl	RCOOH	C _m H₂m+1COOH	-oic acid	Ethanoic acid
Ester	Ester	RCOOR'	C _m H _{2m+1} COOC _n H _{2n+1}	Alkyl alkanoate	Ethyl butanoate

