
PHA284 Organic Chemistry II

Ankara University
Faculty of Pharmacy
Department of Pharmaceutical Chemistry

Aryl Halides and Nucleophilic Aromatic Substitution

Aryl Halides and Nucleophilic Aromatic Substitution

Aryl halides can be remarkably reactive toward nucleophiles if they bear certain substituents or when we allow them to react under the proper conditions.

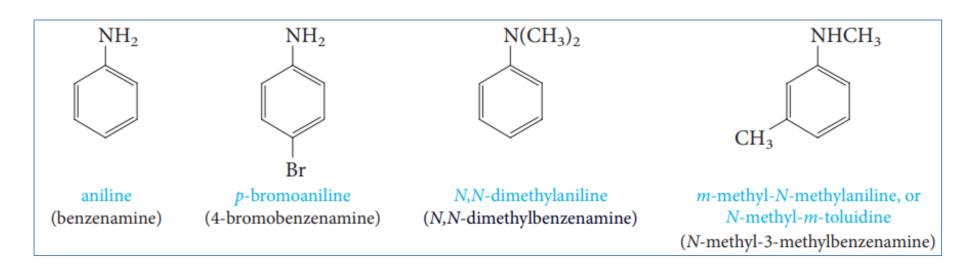
- A- Nucleophilic Aromatic Substitution by Addition–Elimination: The S_NAr Mechanism:
- B- Nucleophilic Aromatic Substitution through an Elimination—Addition Mechanism: Benzyne
- C- Phenylation

Nucleophilic substitution reactions of aryl halides *do* occur readily when an electronic factor makes the aryl carbon bonded to the halogen susceptible to nucleophilic attack.

A- Nucleophilic Aromatic Substitution by Addition–Elimination: The S_NAr Mechanism:

$$\begin{array}{c} \text{CI} \\ \text{NO}_2 \\ \text{HO}^- \end{array} \begin{array}{c} \frac{\text{aq. NaHCO}_3}{130 \, ^{\circ}\text{C}} \xrightarrow{\text{H}_3\text{O}^+} \\ \text{NO}_2 \\ \text{NO}_2 \\ \text{HO}^- \end{array} \begin{array}{c} \frac{\text{aq. NaHCO}_3}{100 \, ^{\circ}\text{C}} \xrightarrow{\text{H}_3\text{O}^+} \\ \text{NO}_2 \\ \text{NO}_2 \\ \text{NO}_2 \\ \text{HO}^- \end{array} \begin{array}{c} \frac{\text{aq. NaHCO}_3}{35 \, ^{\circ}\text{C}} \xrightarrow{\text{H}_3\text{O}^+} \\ \text{NO}_2 \\ \text{NO}_2 \\ \text{NO}_2 \\ \text{NO}_2 \\ \end{array}$$

 B-Nucleophilic Aromatic Substitution through an Elimination—Addition Mechanism: Benzyne


$$\frac{\ddot{K} : \ddot{N}H_{2}}{-33 \, ^{\circ}C} + KBr$$
Aniline

C- Phenylation

 Reactions involving benzyne can be useful for formation of a carbon– carbon bond to a phenyl group (a process called phenylation).

Aromatic amines

Aromatic amines

Basicity of Aromatic amines

$$\begin{array}{c|cccc}
& \vdots \\
& NH_2 \\
& NH_2 \\
& \text{or ammonium ion} \\
& 4.62 \\
& 9.8 \\
\end{array}$$

Preparation of Aromatic amines

$$CH_{3} \xrightarrow{NO_{2}} \frac{3 \text{ H}_{2}, \text{ Ni catalyst}}{\text{or}} CH_{3} \xrightarrow{NH_{2} + 2 \text{ H}_{2}O} NH_{2} + 2 \text{ H}_{2}O$$

$$p\text{-nitrotoluene} \qquad 2. \text{ NaOH,H}_{2}O \qquad p\text{-toluidine}$$

Preparation of Aromatic amines

$$NH_3$$
 $200 \, ^{\circ}C$
 NH_2

Reactions of Aromatic amines

Alkylation:

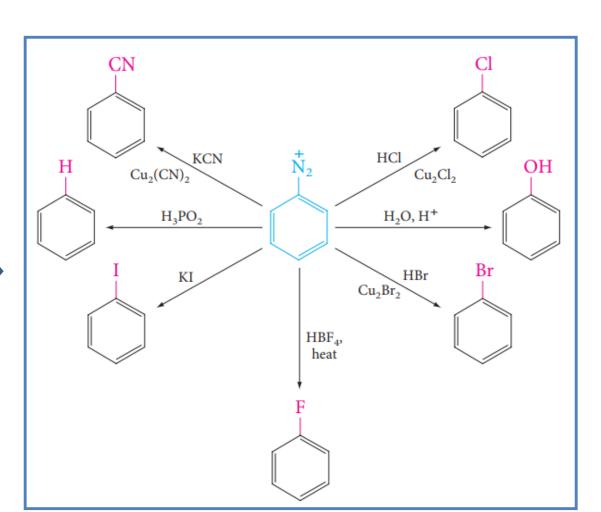
Reactions of Aromatic amines

Amidification:

Reactions of Aromatic amines

$$NH_2$$
 + HCI \rightarrow NH_3

$$\begin{array}{c|c} & & & \\ &$$


Aromatic amines

Aromatic Diazonium Compounds

$$NH_2 + HONO + H^+Cl^- \xrightarrow{0-5^{\circ}C} N_2^+Cl^- + 2 H_2O$$
aniline
nitrous
acid
benzenediazonium
chloride

Aromatic Diazonium Compounds

The nucleophile always takes the position on the benzene ring that was occupied by the diazonio group.

Replacement of the Diazonium Group by -Cl, -Br, or -CN:

$$\begin{array}{c} \text{CH}_{3} \\ \text{NH}_{2} \\ \text{o-Toluidine} \end{array} \begin{array}{c} \text{HCI, NaNO}_{2} \\ \text{H}_{2}O \\ (0-5\,^{\circ}\text{C}) \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{N}_{2}\text{CI} \\ \text{15-60\,^{\circ}\text{C}} \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{O-Chlorotoluene} \\ \text{(74-79\% overall)} \end{array} + \text{N}_{2} \\ \text{HBr, NaNO}_{2} \\ \text{H}_{2}O \\ (0-10\,^{\circ}\text{C}) \end{array} \begin{array}{c} \text{CuBr} \\ \text{I00\,^{\circ}\text{C}} \end{array} \begin{array}{c} \text{CuBr} \\ \text{T00\,^{\circ}\text{C}} \end{array} \begin{array}{c} \text{HBr, NaNO}_{2} \\ \text{HBr, NaNO}_{2} \\ \text{H}_{2}O \end{array} \begin{array}{c} \text{CI} \\ \text{CI} \end{array} \begin{array}{c} \text{CuBr} \\ \text{T00\,^{\circ}\text{C}} \end{array} \begin{array}{c} \text{CI} \\ \text{CI} \end{array} \begin{array}{c} \text{NO}_{2} \\ \text{O-Nitrobenzonitrile} \end{array} \begin{array}{c} \text{NO}_{2} \\ \text{O-Nitrobenzonitrile} \end{array} \begin{array}{c} \text{NO}_{2} \\ \text{O-Nitrobenzonitrile} \end{array} \begin{array}{c} \text{O-Nitrobenzonitrile} \\ \text{(65\% overall)} \end{array}$$

Replacement of the Diazonium Group by -F:

Replacement of the Diazonium Group by -I:

$$NO_2$$
 H_2SO_4 , $NaNO_2$
 $H_2O_{0-5 °C}$
 P -Nitroaniline

 P -Iodonitrobenzene
(81% overall)

Replacement by -OH:

$$H_3C$$
 \longrightarrow N_2^+ $HSO_4^ \xrightarrow{Cu_2O}$ Cu^{2+} , H_2O \longrightarrow P -Cresol hydrogen sulfate p -Cresol (93%)

Aromatic Diazonium Compounds

Diazo coupling

$$\left[\begin{array}{c} \\ \\ \end{array} \right] \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\$$

Aromatic Diazonium Compounds

Diazo coupling

4-(phenyldiazenyl)aniline *p*-Aminoazobenzene 4-phenylazoaniline

• Diazo coupling

$$\bigcap_{N=N}^{\oplus} \bigcap_{N=N}^{OH} \longrightarrow \bigcap_{N=N}^{OH}$$

$$(CH_3)_2N$$
 — $N=N$ — SO_3 — $M=N$ — $M=N$

References

- *Organic Chemistry 11e*, T.W. Graham Solomons, Craig B. Fryhle, Scott A. Snyder, John Wiley & Sons, Inc., 2014, ISBN 978-1-118-13357-6 (cloth) Binder-ready version ISBN 978-1-118-14739-9
- Organic Chemistry: A Short Course, 13th Ed., D.J. Hart, C.M. Hadad, L.E.
 Craine, H. Hart, Brooks/Cole, Cengage Learning, 2012, ISBN-13: 978-1-111-42556-2
- Organic Chemistry, 6th Ed., L. G. Wade, Pearson Education, Inc., 2006, ISBN 0-13-147871-0
- Organic Chemistry, 2nd Ed., Jonathan Clayden, Nick Greeves, and Stuart Warren,, Oxford University Press, 2012, ISBN: 9780199270293
- *Organic Chemistry*, Mukherjee, S.M., et al., New Age International Ltd, 2008. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/ankara/detail.action?docID=3017383.