Linear algebraic equations, Elimination of unknowns, Gauss Elimination, Techniques for

 improving solutions [1-5]References:

1. Chapra S.C. and Canale R.P. "Numerical Methods for Engineers", Sixth Edition,McGraw Hill, International Edition 2010.
2. Chapra S.C. and Canale R. P. "Yazılım ve programlama Uygulamalarıyla Mühendisler için Sayısal Yöntemler" 4.Basımdan Çevirenler: Hasan Heperkan ve Uğur Kesgin 2003.
3.Chapra S.C. "Applied Numerical Methods with MATLAB for engineers and Scientists" Third Edition, McGraw Hill, International Edition 2012.
3. Mathews J.H. and Fink K.D. "Numerical Methods using MATLAB", Fourth Edition, Pearson P. Hall, International Edition 2004.
4. Fausett L.V. "Applied Numerical Analysis Using MATLAB, Second Edition, PearsonP. Hall, International Edition, 2008.
5. Gilat A. And Subramaniam V. "Numerical Methods, An introduction with Applications Using MATLAB", Second Edition,John Wiley and Sons. Inc. 2011.

Galsediniaion

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=11 \\
x_{1}-2 x_{2}+2 x_{3}=4 \\
x_{1}+x_{2}-x_{3}=1
\end{gathered}
$$

Multiply the first equation by (1/1) and subtract the resulf from the second equation. (Reduction of the x_{1} term from the second row.)
$\left[\begin{array}{llll}1 & -2 & 2 & 4\end{array}\right]-\left(\frac{1}{1}\right)\left[\begin{array}{llll}1 & 1 & 1 & 11\end{array}\right]=\left[\begin{array}{llll}0 & -3 & 1 & -7\end{array}\right]$
Multiply the first equation by (111) and subtract the resull from the third equation. (Reduction of the x_{1} term from the third row.)
$\left[\begin{array}{llll}1 & 1 & -1 & 1\end{array}\right]-\left(\frac{1}{1}\right)\left[\begin{array}{llll}1 & 1 & 1 & 11\end{array}\right]=\left[\begin{array}{llll}0 & 0 & -2 & -10\end{array}\right]$
After these operations the set of equations is;
$\left[\begin{array}{rrr}1 & 1 & 1 \\ 0 & -3 & 1 \\ 0 & 0 & -2\end{array}\right]\left\{\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right\}=\left\{\begin{array}{c}11 \\ -7 \\ -10\end{array}\right\}$
We can now solve these equations by back-substitution.
$-2 x_{3}=-10 \rightarrow x_{3}=5$
$-3 x_{2}+x_{3}=-7 \rightarrow x_{2}=4$
$x_{1}+x_{2}+x_{3}=11 \rightarrow x_{1}=2$

MATLAB commands to solve the linear algeborac equation set

$$
\begin{aligned}
& 5 x_{1}-0.2 x_{2}-0.8 x_{3}=4.86 \\
& 0.2 x_{1}+9 x_{2}-0.9 x_{3}=-58.02 \\
& 0.4 x_{1}-0.3 x_{2}+12 x_{3}=60 \\
& \text { >> } A=\left[\begin{array}{lllllll}
5 & -0.2 & -0.8 ; 0.2 & 9 & -0.9 ; & 0.4 & -0.3 \\
12
\end{array}\right] ; \\
& \gg B=[4.86 ;-58.02 ; 60] ; \\
& \text { >> } x=A \backslash B \\
& \text { or } \\
& \text { >> } x=i n v(A) * B
\end{aligned}
$$

Gauss elimination method to solve linear system of equations $[A]\{X\}=\{B\}$

$$
A=\left[\begin{array}{ccc}
49 & -7 & 14 \\
-7 & 26 & 3 \\
14 & 3 & 21
\end{array}\right], X=\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}, B=\left\{\begin{array}{c}
126 \\
-53 \\
-3
\end{array}\right\}
$$

$$
[A B]=\left[\begin{array}{cccc}
49 & -7 & 14 & 126 \\
-7 & 26 & 3 & -53 \\
14 & 3 & 21 & -3
\end{array}\right]
$$

Multiply the first row by $(-7 / 49)$ and subtract the result from the second row. (Reduction of the x_{1} term from the second row.)
$\left[\begin{array}{llll}-7 & 26 & 3 & -53\end{array}\right]-\left(\frac{-7}{49}\right)\left[\begin{array}{llll}49 & -7 & 14 & 126\end{array}\right]=\left[\begin{array}{llll}0 & 25 & 5 & -35\end{array}\right]$
$[A B]=\left[\begin{array}{cccc}49 & -7 & 14 & 126 \\ 0 & 25 & 5 & -35 \\ 14 & 3 & 21 & -3\end{array}\right] \begin{aligned} & \text { Multiply the first row by (144) and subtract the result from the third tow. (Reduction of the ex third form } \\ & \text { form }\end{aligned}$

$$
\left[\begin{array}{llll}
14 & 3 & 21 & -3
\end{array}\right]-\left(\frac{14}{49}\right)\left[\begin{array}{llll}
49 & -7 & 14 & 126
\end{array}\right]=\left[\begin{array}{llll}
0 & 5 & 17 & -39
\end{array}\right]
$$

$[A B]=\left[\begin{array}{cccc}49 & -7 & 14 & 126 \\ 0 & 25 & 5 & -35 \\ 0 & 5 & 17 & -39\end{array}\right]$
Multiply the second row by $(5 / 25)$ and subtract the result from the third row. (Reduction of the x_{2} term from the third row.)

$$
\left[\begin{array}{llll}
0 & 5 & 17 & -39
\end{array}\right]-\left(\frac{14}{49}\right)\left[\begin{array}{llll}
0 & 25 & 5 & -35
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 16 & -32
\end{array}\right]
$$

$\left[\begin{array}{ccc}49 & -7 & 14 \\ 0 & 25 & 5\end{array}\right]\left\{\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right\}=\left\{\begin{array}{c}126 \\ -35\end{array}\right\}$ We can now solve these equations by back-substitution.
$\left[\begin{array}{ll}0 & 0\end{array}\right.$
$16]\left[\begin{array}{l}x_{2} \\ x_{3}\end{array}\right\}$
(-32)

$$
\begin{array}{ll}
16 x_{3}=-32 & \rightarrow x_{3}=-2 \\
25 x_{2}+5 x_{3}=-35 & \rightarrow x_{2}=-1 \\
49 x_{1}-7 x_{2}+14 x_{3}=126 & \rightarrow x_{1}=3
\end{array}
$$

$$
\begin{align*}
& x_{1}+2 x_{2}+x_{3}+4 x_{4}=13 \tag{1}\\
& 2 x_{1}+0 x_{2}+4 x_{3}+3 x_{4}=28 \tag{2}\\
& 4 x_{1}+2 x_{2}+2 x_{3}+x_{4}=20 \tag{3}\\
& -3 x_{1}+x_{2}+3 x_{3}+2 x_{4}=6 \tag{4}
\end{align*}
$$

In order to obtain upper triangular matrix, we need to eliminate x_{1}, x_{2} and x_{3} from the set of equation

Step 1: Forward elimination for x_{1}

$$
\begin{equation*}
2 / x_{1}+2 x_{2}+x_{3}+4 x_{4}=13 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& 2 x_{1}+0 x_{2}+4 x_{3}+3 x_{4}=28 \tag{2}\\
& \frac{2 x_{1}+4 x_{2}+2 x_{3}+8 x_{4}=26 \quad \text { (1) }}{-4 x_{2}+2 x_{3}-5 x_{4}=2 \quad \text { (5) }} \quad x_{1} \text { eliminated }
\end{align*}
$$

Step 2: Forward elimination for x_{1}

$$
\begin{equation*}
4 / x_{1}+2 x_{2}+x_{3}+4 x_{4}=13 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
4 x_{1}+2 x_{2}+2 x_{3}+x_{4}=20 \tag{3}
\end{equation*}
$$

$$
4 x_{1}+8 x_{2}+4 x_{3}+16 x_{4}=52
$$

$$
-6 x_{2}-2 x_{3}-15 x_{4}=-32 \quad \text { (6) } \quad x_{1} \text { eliminated }
$$

Step 3: Forward elimination for x_{1}
$-3 / x_{1}+2 x_{2}+x_{3}+4 x_{4}=13$

$$
\begin{equation*}
-3 x_{1}+x_{2}+3 x_{3}+2 x_{4}=6 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
-3 x_{1}-6 x_{2}-3 x_{3}-12 x_{4}=-39 \tag{4}
\end{equation*}
$$

$\begin{array}{r}-3 x_{1}-6 x_{2}-3 x_{3}-12 x_{4}=-39 \\ 7 x_{2}+6 x_{3}+14 x_{4}\end{array}=45$
(7) $\quad x_{1}$ eliminated

Step 4: Forward elimination for x_{2}

$$
\begin{equation*}
\frac{6}{4} /-4 x_{2}+2 x_{3}-5 x_{4}=2 \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& -6 x_{2}-2 x_{3}-15 x_{4}=-32 \tag{6}\\
& -6 x_{2}+3 x_{3}-7.5 x_{4}=3 \quad(5) \tag{5}
\end{align*}
$$

$$
-5 x_{3}-7.5 x_{4}=-35(8) \quad x_{2} \text { eliminated }
$$

Step 5: Forward elimination for x_{2}

$$
\begin{equation*}
-\frac{7}{4} /-4 x_{2}+2 x_{3}-5 x_{4}=2 \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
& 7 x_{2}+6 x_{3}+14 x_{4}=45 \\
& 7 x_{2}-3.5 x_{3}+8.75 x_{4}=-3.5 \quad(\mathbf{5}) \\
& \hline 9.5 x_{3}+5.25 x_{4}=48.5 \quad(9) \quad x_{2} \text { eliminated }
\end{aligned}
$$

Step 6: Forward elimination for x_{3}

$$
-\frac{9.5}{5} /-5 x_{3}-7.5 x_{4}=-35 \quad(\mathbf{8})
$$

$$
\begin{aligned}
& 9.5 x_{3}+5.25 x_{4}=48.5(9) \\
& 9.5 x_{3}+14.25 x_{4}=66.5(8) \\
& \hline-9 x_{4}=-18 \quad(\mathbf{1 0}) \quad x_{3} \text { eliminated }
\end{aligned}
$$

Therefore the upper triangular matrix:

$$
\begin{align*}
& x_{1}+2 x_{2}+x_{3}+4 x_{4}=13 \tag{1}\\
&-4 x_{2}+2 x_{3}-5 x_{4}=2 \tag{5}\\
&-5 x_{3}-7.5 x_{4}=-35 \tag{8}\\
&-9 x_{4}=-18 \tag{10}
\end{align*}
$$

Back substitution:

$$
\left.\begin{array}{ll}
-9 x_{4}=-18 \quad x_{4}=2 & \\
-5 x_{3}-7.5 x_{4}=-35 & -5 x_{3}-15=-35
\end{array} x_{3}=4\right\}
$$

