Interpolation, Interpolating Polynomials, Spline interpolation [1-6]

References:

1. Chapra S.C. and Canale R.P. "Numerical Methods for Engineers", Sixth Edition,McGraw Hill, International Edition 2010.
2. Chapra S.C. and Canale R. P. "Yazılım ve programlama Uygulamalarıyla Mühendisler için Sayısal Yöntemler" 4.Basımdan Çevirenler: Hasan Heperkan ve Uğur Kesgin 2003.
3.Chapra S.C. "Applied Numerical Methods with MATLAB for engineers and Scientists" Third Edition, McGraw Hill, International Edition 2012.
3. Mathews J.H. and Fink K.D. "Numerical Methods using MATLAB", Fourth Edition, Pearson P. Hall, International Edition 2004.
4. Fausett L.V. "Applied Numerical Analysis Using MATLAB, Second Edition, PearsonP. Hall, International Edition, 2008.
5. Gilat A. And Subramaniam V. "Numerical Methods, An introduction with Applications Using MATLAB", Second Edition,John Wiley and Sons. Inc. 2011.

2nd order Lagrange interpolation

$$
\begin{array}{ll}
x_{0}=0.10377 & f\left(x_{0}\right)=6.4147 \\
x_{1}=0.11144 & f\left(x_{1}\right)=6.5453 \\
x_{2}=0.1254 & f\left(x_{2}\right)=6.7664
\end{array}
$$

$$
f_{n}(x)=\sum_{i=0}^{n} L_{i}(x) f_{n}(x)
$$

$$
L_{i}(x)=\prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

$$
f_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)
$$

$$
\begin{aligned}
& f_{2}(x)=\frac{(0.108-0.11144)(0.108-0.1254)}{(0.10377-0.11144)(0.10377-0.1254)} 6.4147+\frac{(0.108-0.10377)(0.108-0.1254)}{(0.11144-0.10377)(0.11144-0.1254)} 6.5453 \\
& +\frac{(0.108-0.10377)(0.108-0.11144)}{(0.1254-0.10377)(0.1254-0.11144)} 6.7664
\end{aligned}
$$

$$
f_{2}(0.108)=6.4874
$$

The Lagrange Cubic Interpolating Polynomial

$$
\begin{aligned}
& P_{3}(x)=y_{0} \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)}+y_{1} \frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} \\
& \quad+y_{2} \frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}+y_{3} \frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
P_{x}(x)=1.000000 & \frac{(x-0.4)(x-0.8)(x-1.2)}{(0.0-0.4)(0.0-0.8)(0.0-1.2)}+0.921061 \frac{(x-0.0)(x-0.8)(x-1.2)}{(0.4-0.0)(0.4-0.8)(0.4-1.2)} \\
& +0.696707 \frac{(x-0.0)(x-0.4)(x-1.2)}{(0.8-0.0)(0.8-0.4)(0.8-1.2)} \\
& +0.362358 \frac{(x-0.0)(x-0.4)(x-0.8)}{(1.2-0.0)(1.2-0.4)(1.2-0.8)}
\end{aligned}
$$

$$
P_{3}(x)=-2.604167(x-0.4)(x-0.8)(x-1.2)+7.195789(x-0.0)(x-0.8)(x-1.2)
$$

$$
-5.443021(x-0.0)(x-0.4)(x-1.2)+0.943641(x-0.0)(x-0.4)(x-0.8)
$$

$$
P_{3}(0.6)=-0.062500008+0518096808+0.3918975-0.022647384
$$

$$
P_{3}(0.6)=0.824847 \cong 0.825
$$

cubic splines

estimate the value at $\mathrm{x}=5.5 . \mathrm{f}(\mathrm{x}=5.5)=$?

\mathbf{x}	3.0	4.5	5.0	7.0
$\mathbf{f (\mathbf { x })}$	2.5	1.0	1.1	2.5

$$
\begin{aligned}
f_{i}(x)= & \frac{f_{i}^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}-1}\right)}{6\left(x_{i}-x_{i-1}\right)}\left(x_{i}-x\right)^{3}+\frac{f_{i}^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)}{6\left(x_{i}-x_{i-1}\right)}\left(x-x_{i-1}\right)^{3}+\left[\frac{f\left(x_{i-1}\right)}{\left(x_{i}-x_{i-1}\right)}-\frac{f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}-1}\right)\left(x_{i}-x_{i-1}\right)}{6}\right]\left(x_{i}-x\right)+ \\
& {\left[\frac{f\left(x_{i}\right)}{\left(x_{i}-x_{i-1}\right)}-\frac{f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)\left(x_{i}-x_{i-1}\right)}{6}\right]\left(x-x_{i-1}\right) }
\end{aligned}
$$

$$
\left(x_{i}-x_{i-1}\right) f^{\prime \prime}\left(\left(_{\mathrm{i}-1}\right)+2\left(x_{i+1}-x_{i-1}\right) f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)+\left(x_{i+1}-x_{i}\right) f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}+1}\right)=\frac{6}{x_{i+1}-x_{i}}\left[f\left(x_{i+1}\right)-f\left(x_{i}\right)\right]+\frac{6}{x_{i}-x_{i-1}}\left[f\left(x_{i-1}\right)-f\left(x_{i}\right)\right]\right.
$$

$$
\begin{aligned}
& \left(x_{i}-x_{i-1}\right) f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}-1}\right)+2\left(x_{i+1}-x_{i-1}\right) f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)+\left(x_{i+1}-x_{i}\right) f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}+1}\right)=\frac{6}{x_{i+1}-x_{i}}\left[f\left(x_{i+1}\right)-f\left(x_{i}\right)\right]+\frac{6}{x_{i}-x_{i-1}}\left[f\left(x_{i-1}\right)-f\left(x_{i}\right)\right] \\
& \mathrm{i}=1 \\
& \left(x_{1}-x_{0}\right) f^{\prime \prime}\left(x_{0}\right)+2\left(x_{2}-x_{0}\right) f^{\prime \prime}\left(x_{1}\right)+\left(x_{2}-x_{1}\right) f^{\prime \prime}\left(x_{2}\right)=\frac{6}{x_{2}-x_{1}}\left[f\left(x_{2}\right)-f\left(x_{1}\right)\right]+\frac{6}{x_{1}-x_{0}}\left[f\left(x_{0}\right)-f\left(x_{1}\right)\right] \\
& (4.5-3) f^{\prime \prime}(3)+2(5-3) f^{\prime \prime}(4.5)+(5-4.5) f^{\prime \prime}(5)=\frac{6}{(5-4.5)}[1.1-1]+\frac{6}{(4.5-3)}[2.5-1]
\end{aligned}
$$

The second derivatives at the end knots are zero

$$
\begin{align*}
& f^{\prime \prime}(3)=0 \\
& 4 f^{\prime \prime}(4.5)+0.5 f^{\prime \prime}(5)=7.2 \tag{1}
\end{align*}
$$

Same equation can be applied to the second interior point

$$
\mathrm{i}=2
$$

$$
\begin{aligned}
& \left(x_{2}-x_{1}\right) f^{\prime \prime}\left(\mathrm{x}_{1}\right)+2\left(x_{3}-x_{1}\right) f^{\prime \prime}\left(\mathrm{x}_{2}\right)+\left(x_{3}-x_{2}\right) f^{\prime \prime}\left(\mathrm{x}_{3}\right)=\frac{6}{x_{3}-x_{2}}\left[f\left(x_{3}\right)-f\left(x_{2}\right)\right]+\frac{6}{x_{2}-x_{1}}\left[f\left(x_{1}\right)-f\left(x_{2}\right)\right] \\
& (5-4.5) f^{\prime \prime}(4.5)+2(7-4.5) f^{\prime \prime}(5)+(7-5) f^{\prime \prime}(7)=\frac{6}{7-5}[f(7)-f(5)]+\frac{6}{5-4.5}[f(4.5)-f(5)]
\end{aligned}
$$

$$
\begin{align*}
& (5-4.5) f^{\prime \prime}(4.5)+2(7-4.5) f^{\prime \prime}(5)+(7-5) f^{\prime \prime}(7)=\frac{6}{7-5}[2.5-1.1]+\frac{6}{5-4.5}[1-1.1] \\
& 0.5 f^{\prime \prime}(4.5)+5 f^{\prime \prime}(5)=3 \tag{2}\\
& 4 f^{\prime \prime}(4.5)+0.5 f^{\prime \prime}(5)=7.2 \tag{1}\\
& (-8)\left\{0.5 f^{\prime \prime}(4.5)+5 f^{\prime \prime}(5)=3\right\} \tag{2}
\end{align*}
$$

$4 f^{\prime \prime}(4.5)+0.5 f^{\prime \prime}(5)=7.2$
$-4 f^{\prime \prime}(4.5)-40 f^{\prime \prime}(5)=-24$
and are added $\quad-39.5 f^{\prime \prime}(5)=-16.8$

$$
f^{\prime \prime}(5)=0.42531
$$

If we put $f^{\prime \prime}(5)=0.42531$ in equation (1)
$4 f^{\prime \prime}(4.5)+0.5(0.42531)=7.2$
$f^{\prime \prime}(4.5)=1.74683$

$$
\begin{aligned}
f_{i}(x) & =\frac{f_{i}^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}-1}\right)}{6\left(x_{i}-x_{i-1}\right)}\left(x_{i}-x\right)^{3}+\frac{f_{i}^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)}{6\left(x_{i}-x_{i-1}\right)}\left(x-x_{i-1}\right)^{3}+\left[\frac{f\left(x_{i-1}\right)}{\left(x_{i}-x_{i-1}\right)}-\frac{f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}-1}\right)\left(x_{i}-x_{i-1}\right)}{6}\right]\left(x_{i}-x\right)+ \\
& {\left[\frac{f\left(x_{i}\right)}{\left(x_{i}-x_{i-1}\right)}-\frac{f^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)\left(x_{i}-x_{i-1}\right)}{6}\right]\left(x-x_{i-1}\right) }
\end{aligned}
$$

$\mathrm{i}=1$

$$
\begin{aligned}
f_{1}(x) & =\frac{f_{1}^{\prime \prime}\left(\mathrm{x}_{0}\right)}{6\left(x_{1}-x_{0}\right)}\left(x_{1}-x\right)^{3}+\frac{f_{1}^{\prime \prime}\left(\mathrm{x}_{1}\right)}{6\left(x_{1}-x_{0}\right)}\left(x-x_{0}\right)^{3}+\left[\frac{f\left(x_{0}\right)}{\left(x_{1}-x_{0}\right)}-\frac{f^{\prime \prime}\left(\mathrm{x}_{0}\right)\left(x_{1}-x_{0}\right)}{6}\right]\left(x_{1}-x\right)+ \\
& {\left[\frac{f\left(x_{1}\right)}{\left(x_{1}-x_{0}\right)}-\frac{f^{\prime \prime}\left(\mathrm{x}_{1}\right)\left(x_{1}-x_{0}\right)}{6}\right]\left(x-x_{0}\right) } \\
f_{1}(x) & =\frac{f_{1}^{\prime \prime}(3)}{6(4.5-3)}(4.5-x)^{3}+\frac{f_{1}^{\prime \prime}(4.5)}{6(4.5-3)}(x-3)^{3}+\left[\frac{f(3)}{(4.5-3)}-\frac{f^{\prime \prime}(3)(4.5-3)}{6}\right](4.5-x)+ \\
& {\left[\frac{f(4.5)}{(4.5-3)}-\frac{f^{\prime \prime}(4.5)(4.5-3)}{6}\right](x-3) }
\end{aligned}
$$

The second derivatives at the end knots are zero

$$
\begin{aligned}
& f^{\prime \prime}(3)=f_{1}^{\prime \prime}(3)=0 \\
& f_{1}(x)=\frac{1.74683}{9}(x-3)^{3}+\left[\frac{2.5}{1.5}(4.5-x)\right]+\left[\frac{1}{1.5}-1.74683 * 0.25\right](x-3)
\end{aligned}
$$

Cubic spline for first interval

$$
f_{1}(x)=0.194092(x-3)^{3}+[1.66667(4.5-x)]+0.229959(x-3)
$$

$$
\mathrm{i}=2
$$

$$
f_{2}(x)=\frac{f_{2}^{\prime \prime}\left(\mathrm{x}_{1}\right)}{6\left(x_{2}-x_{1}\right)}\left(x_{2}-x\right)^{3}+\frac{f_{2}^{\prime \prime}\left(\mathrm{x}_{2}\right)}{6\left(x_{2}-x_{1}\right)}\left(x-x_{1}\right)^{3}+\left[\frac{f\left(x_{1}\right)}{\left(x_{2}-x_{1}\right)}-\frac{f^{\prime \prime}\left(\mathrm{x}_{1}\right)\left(x_{2}-x_{1}\right)}{6}\right]\left(x_{2}-x\right)+
$$

$$
\left[\frac{f\left(x_{2}\right)}{\left(x_{2}-x_{1}\right)}-\frac{f^{\prime \prime}\left(\mathrm{x}_{2}\right)\left(x_{2}-x_{1}\right)}{6}\right]\left(x-x_{1}\right)
$$

$$
f_{2}(x)=\frac{f_{2}^{\prime \prime}(4.5)}{6(5-4.5)}(5-x)^{3}+\frac{f_{2}^{\prime \prime}(5)}{6(5-4.5)}(x-4.5)^{3}+\left[\frac{f(4.5)}{(5-4.5)}-\frac{f^{\prime \prime}(4.5)(5-4.5)}{6}\right](5-x)+
$$

$$
\left[\frac{f(5)}{(5-4.5)}-\frac{f^{\prime \prime}(5)(5-4.5)}{6}\right](x-4.5)
$$

$$
f_{2}(x)=\frac{1.74683}{3}(5-x)^{3}+\frac{0.42531}{3}(x-4.5)^{3}+\left[\frac{1}{0.5}-1.74683 x 0.08333\right](5-x)+
$$

$$
\left[\frac{1.1}{0.5}-0.42531 x 0.08333\right](x-4.5)
$$

Cubic spline for second interval

$$
f_{2}(x)=0.582276(5-x)^{3}+0.14177(x-4.5)^{3}+1.854436(5-x)+2.164558(x-4.5)
$$

i=3

$$
\begin{aligned}
f_{3}(x) & =\frac{f_{3}^{\prime \prime}\left(\mathrm{x}_{2}\right)}{6\left(x_{3}-x_{2}\right)}\left(x_{3}-x\right)^{3}+\frac{f_{3}^{\prime \prime}\left(\mathrm{x}_{3}\right)}{6\left(x_{3}-x_{2}\right)}\left(x-x_{2}\right)^{3}+\left[\frac{f\left(x_{2}\right)}{\left(x_{3}-x_{2}\right)}-\frac{f^{\prime \prime}\left(\mathrm{x}_{2}\right)\left(x_{3}-x_{2}\right)}{6}\right]\left(x_{3}-x\right)+ \\
& {\left[\frac{f\left(x_{3}\right)}{\left(x_{3}-x_{2}\right)}-\frac{f^{\prime \prime}\left(\mathrm{x}_{3}\right)\left(x_{3}-x_{2}\right)}{6}\right]\left(x-x_{2}\right) }
\end{aligned}
$$

$$
f_{3}(x)=\frac{f_{3}^{\prime \prime}(5)}{6(7-5)}(7-x)^{3}+\frac{f_{3}^{\prime \prime}(7)}{6(7-5)}(x-5)^{3}+\left[\frac{f(5)}{(7-5)}-\frac{f^{\prime \prime}(5)(7-5)}{6}\right](7-x)+\left[\frac{f(7)}{(7-5)}-\frac{f^{\prime \prime}(7)(7-5)}{6}\right](x-5)
$$

The second derivatives at the end knots are zero

$$
\begin{aligned}
& f^{\prime \prime}(7)=f_{3}^{\prime \prime}(7)=0 \\
& f_{3}(x)=\frac{0.42531}{12}(7-x)^{3}+\left[\frac{1.1}{2}-0.42531 x 0.33333\right](7-x)+\left[\frac{2.5}{2}\right](x-5)
\end{aligned}
$$

Cubic spline for third interval
$f_{3}(x)=0.035442(7-x)^{3}+0.408231(7-x)+1.25(x-5)$
$x=5.5$ falls within the third interval

$$
f_{3}(5.5)=0.035442(7-5.5)^{3}+0.408231(7-5.5)+1.25(5.5-5)=1.356963
$$

Inverse Quadratic Interpolation method:

First iteration:

$$
\begin{aligned}
& y=f(x)=e^{-x}-x=0 \\
& x_{i-2}=0.1 \quad y_{i-2}=f(0.1)=e^{-0.1}-0.1=0.8048 \\
& x_{i-1}=0.5 \quad y_{i-1}=f(0.5)=e^{-0.5}-0.5=0.1065 \\
& x_{i}=1.0 \quad y_{i}=f(1.0)=e^{-1.0}-1.0=-0.6321 \\
& x_{i+1}=\frac{y_{i-1} y_{i}}{\left(y_{i-2}-y_{i-1}\right)\left(y_{i-2}-y_{i}\right)} x_{i-2}+\frac{y_{i-2} y_{i}}{\left(y_{i-1}-y_{i-2}\right)\left(y_{i-1}-y_{i}\right)} x_{i-1}+\frac{y_{i-2} y_{i-1}}{\left(y_{i}-y_{i-2}\right)\left(y_{i}-y_{i-1}\right)} x_{i}
\end{aligned}
$$

$$
x_{i+1}=\frac{0.1065(-0.6321)}{(0.8048-0.1065)(0.8048--0.6321)} 0.1+\frac{0.8048(-0.6321)}{(0.1065-0.8048)(0.1065--0.6321)} 0.5
$$

$$
+\frac{0.8048(0.1065)}{(-0.6321-0.8048)(-0.6321-0.1065)} 1.0
$$

$$
x_{i+1}=-0.0067+0.4931+0.0807=0.5671
$$

$$
y_{i+1}=f(0.5671)=e^{-0.5671}-0.5671=0.000068 \approx 0
$$

$$
\varepsilon_{t}=\left|\frac{x_{\text {true }}-x_{r}^{\text {new }}}{x_{\text {true }}}\right| 100 \%=\varepsilon_{t}=\left|\frac{0.56714-0.5671}{0.56714}\right| 100 \%=0.007 \%
$$

