Interpolation, Interpolating Polynomials, Spline interpolation [1-6]

References:

1. Chapra S.C. and Canale R.P. "Numerical Methods for Engineers", Sixth Edition,McGraw Hill, International Edition 2010.

2. Chapra S.C. and Canale R. P. "Yazılım ve programlama Uygulamalarıyla Mühendisler için Sayısal Yöntemler" 4.Basımdan Çevirenler: Hasan Heperkan ve Uğur Kesgin 2003.

3.Chapra S.C. "Applied Numerical Methods with MATLAB for engineers and Scientists" Third Edition, McGraw Hill, International Edition 2012.

4. Mathews J.H. and Fink K.D. "Numerical Methods using MATLAB", Fourth Edition, Pearson P. Hall, International Edition 2004.

5. Fausett L.V. "Applied Numerical Analysis Using MATLAB, Second Edition, PearsonP. Hall, International Edition, 2008.

6. Gilat A. And Subramaniam V. "Numerical Methods, An introduction with Applications Using MATLAB", Second Edition, John Wiley and Sons. Inc. 2011.

2nd order Lagrange interpolation

$$\begin{aligned} x_0 &= 0.10377 \quad f(x_0) = 6.4147 \\ x_1 &= 0.11144 \quad f(x_1) = 6.5453 \\ x_2 &= 0.1254 \quad f(x_2) = 6.7664 \end{aligned}$$

$$f_n(x) = \sum_{i=0}^n L_i(x) f_n(x)$$
$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x-x_j}{x_i-x_j}$$

$$f_{2}(x) = \frac{(x-x_{1})(x-x_{2})}{(x_{0}-x_{1})(x_{0}-x_{2})}f(x_{0}) + \frac{(x-x_{0})(x-x_{2})}{(x_{1}-x_{0})(x_{1}-x_{2})}f(x_{1}) + \frac{(x-x_{0})(x-x_{1})}{(x_{2}-x_{0})(x_{2}-x_{1})}f(x_{2})$$

$$f_2(x) = \frac{(0.108 - 0.11144)(0.108 - 0.1254)}{(0.10377 - 0.11144)(0.10377 - 0.1254)} 6.4147 + \frac{(0.108 - 0.10377)(0.108 - 0.1254)}{(0.11144 - 0.10377)(0.11144 - 0.1254)} 6.5453 + \frac{(0.108 - 0.10377)(0.108 - 0.11144)}{(0.1254 - 0.10377)(0.1254 - 0.11144)} 6.7664$$

 $f_2(0.108) = 6.4874$

The Lagrange Cubic Interpolating Polynomial

$$P_{3}(x) = y_{0} \frac{(x - x_{1})(x - x_{2})(x - x_{3})}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} + y_{1} \frac{(x - x_{0})(x - x_{2})(x - x_{3})}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})} + y_{2} \frac{(x - x_{0})(x - x_{1})(x - x_{3})}{(x_{2} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} + y_{3} \frac{(x - x_{0})(x - x_{1})(x - x_{2})}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{2})}$$

$$P_x(x) = 1.000000 \frac{(x - 0.4)(x - 0.8)(x - 1.2)}{(0.0 - 0.4)(0.0 - 0.8)(0.0 - 1.2)} + 0.921061 \frac{(x - 0.0)(x - 0.8)(x - 1.2)}{(0.4 - 0.0)(0.4 - 0.8)(0.4 - 1.2)} + 0.696707 \frac{(x - 0.0)(x - 0.4)(x - 1.2)}{(0.8 - 0.0)(0.8 - 0.4)(0.8 - 1.2)} + 0.362358 \frac{(x - 0.0)(x - 0.4)(x - 0.8)}{(1.2 - 0.0)(1.2 - 0.4)(1.2 - 0.8)}$$

 $P_{3}(x) = -2.604167(x - 0.4)(x - 0.8)(x - 1.2) + 7.195789(x - 0.0)(x - 0.8)(x - 1.2)$ -5.443021(x - 0.0)(x - 0.4)(x - 1.2) + 0.943641(x - 0.0)(x - 0.4)(x - 0.8)

 $P_3(0.6) = -0.062500008 + 0518096808 + 0.3918975 - 0.022647384$ $P_3(0.6) = 0.824847 \cong 0.825$

cubic splines

estimate the value at x=5.5. f(x=5.5)=?

$$f_{i}(x) = \frac{f_{i}''(x_{i-1})}{6(x_{i} - x_{i-1})} (x_{i} - x)^{3} + \frac{f_{i}''(x_{i})}{6(x_{i} - x_{i-1})} (x - x_{i-1})^{3} + \left[\frac{f(x_{i-1})}{(x_{i} - x_{i-1})} - \frac{f''(x_{i-1})(x_{i} - x_{i-1})}{6}\right] (x_{i} - x) + \left[\frac{f(x_{i})}{(x_{i} - x_{i-1})} - \frac{f''(x_{i})(x_{i} - x_{i-1})}{6}\right] (x - x_{i-1})$$

 $(x_{i} - x_{i-1})f''(x_{i-1}) + 2(x_{i+1} - x_{i-1})f''(x_{i}) + (x_{i+1} - x_{i})f''(x_{i+1}) = \frac{6}{x_{i+1} - x_{i}} \left[f(x_{i+1}) - f(x_{i}) \right] + \frac{6}{x_{i} - x_{i-1}} \left[f(x_{i-1}) - f(x_{i}) \right]$

$$(x_{i} - x_{i-1})f''(x_{i+1}) + 2(x_{i+1} - x_{i-1})f''(x_{i}) + (x_{i+1} - x_{i})f''(x_{i+1}) = \frac{6}{x_{i+1} - x_{i}}[f(x_{i+1}) - f(x_{i})] + \frac{6}{x_{i} - x_{i-1}}[f(x_{i-1}) - f(x_{i})]$$

i=1
$$(x_{1} - x_{0})f''(x_{0}) + 2(x_{2} - x_{0})f''(x_{1}) + (x_{2} - x_{1})f''(x_{2}) = \frac{6}{x_{2} - x_{1}}[f(x_{2}) - f(x_{1})] + \frac{6}{x_{1} - x_{0}}[f(x_{0}) - f(x_{1})]$$

$$(4.5 - 3)f''(3) + 2(5 - 3)f''(4.5) + (5 - 4.5)f''(5) = \frac{6}{(5 - 4.5)}[1.1 - 1] + \frac{6}{(4.5 - 3)}[2.5 - 1]$$

The second derivatives at the end knots are zero

$$f''(3) = 0$$

$$4f''(4.5) + 0.5f''(5) = 7.2 \tag{1}$$

Same equation can be applied to the second interior point

$$(x_2 - x_1)f''(x_1) + 2(x_3 - x_1)f''(x_2) + (x_3 - x_2)f''(x_3) = \frac{6}{x_3 - x_2}[f(x_3) - f(x_2)] + \frac{6}{x_2 - x_1}[f(x_1) - f(x_2)]$$

$$(5-4.5)f''(4.5) + 2(7-4.5)f''(5) + (7-5)f''(7) = \frac{6}{7-5}[f(7) - f(5)] + \frac{6}{5-4.5}[f(4.5) - f(5)]$$

$$(5-4.5)f''(4.5) + 2(7-4.5)f''(5) + (7-5)f''(7) = \frac{6}{7-5}[2.5-1.1] + \frac{6}{5-4.5}[1-1.1]$$

$$0.5f''(4.5) + 5f''(5) = 3 \qquad (2)$$

$$4f''(4.5) + 0.5f''(5) = 7.2 \qquad (1)$$

$$(-8)\{0.5f''(4.5) + 5f''(5) = 3\} \qquad (2)$$

$$4f''(4.5) + 0.5f''(5) = 7.2 \quad (1)$$

$$-4f''(4.5) - 40f''(5) = -24 \quad (2)$$

and are added $-39.5f''(5) = -16.8 \qquad f''(5) = 0.42531$
If we put $f''(5) = 0.42531$ in equation (1)

$$4f''(4.5) + 0.5(0.4253 1) = 7.2 \qquad f''(4.5) = 1.74683$$

$$f_{i}(x) = \frac{f_{i}''(x_{i-1})}{6(x_{i} - x_{i-1})} (x_{i} - x)^{3} + \frac{f_{i}''(x_{i})}{6(x_{i} - x_{i-1})} (x - x_{i-1})^{3} + \left[\frac{f(x_{i-1})}{(x_{i} - x_{i-1})} - \frac{f''(x_{i-1})(x_{i} - x_{i-1})}{6}\right] (x_{i} - x) + \left[\frac{f(x_{i})}{(x_{i} - x_{i-1})} - \frac{f''(x_{i})(x_{i} - x_{i-1})}{6}\right] (x - x_{i-1})$$

$$f_{1}(x) = \frac{f_{1}''(x_{0})}{6(x_{1} - x_{0})}(x_{1} - x)^{3} + \frac{f_{1}''(x_{1})}{6(x_{1} - x_{0})}(x - x_{0})^{3} + \left[\frac{f(x_{0})}{(x_{1} - x_{0})} - \frac{f''(x_{0})(x_{1} - x_{0})}{6}\right](x_{1} - x) + \left[\frac{f(x_{1})}{(x_{1} - x_{0})} - \frac{f''(x_{1})(x_{1} - x_{0})}{6}\right](x - x_{0})$$

$$f_{1}(x) = \frac{f_{1}''(3)}{6(4.5-3)}(4.5-x)^{3} + \frac{f_{1}''(4.5)}{6(4.5-3)}(x-3)^{3} + \left[\frac{f(3)}{(4.5-3)} - \frac{f''(3)(4.5-3)}{6}\right](4.5-x) + \left[\frac{f(4.5)}{(4.5-3)} - \frac{f''(4.5)(4.5-3)}{6}\right](x-3)$$

The second derivatives at the end knots are zero

$$f''(3) = f_1''(3) = 0$$

$$f_1(x) = \frac{1.74683}{9} (x-3)^3 + \left[\frac{2.5}{1.5}(4.5-x)\right] + \left[\frac{1}{1.5} - 1.74683 * 0.25\right] (x-3)$$

i=1

Cubic spline for first interval

$$f_1(x) = 0.194092 (x-3)^3 + [1.66667 (4.5-x)] + 0.229959 (x-3)$$

$$i=2$$

$$f_{2}(x) = \frac{f_{2}''(x_{1})}{6(x_{2}-x_{1})}(x_{2}-x)^{3} + \frac{f_{2}''(x_{2})}{6(x_{2}-x_{1})}(x-x_{1})^{3} + \left[\frac{f(x_{1})}{(x_{2}-x_{1})} - \frac{f''(x_{1})(x_{2}-x_{1})}{6}\right](x_{2}-x) + \left[\frac{f(x_{2})}{(x_{2}-x_{1})} - \frac{f''(x_{2})(x_{2}-x_{1})}{6}\right](x-x_{1})$$

$$f_{2}(x) = \frac{f_{2}''(4.5)}{6(5-4.5)}(5-x)^{3} + \frac{f_{2}''(5)}{6(5-4.5)}(x-4.5)^{3} + \left[\frac{f(4.5)}{(5-4.5)} - \frac{f''(4.5)(5-4.5)}{6}\right](5-x) + \left[\frac{f(5)}{(5-4.5)} - \frac{f''(5)(5-4.5)}{6}\right](x-4.5)$$

$$f_{2}(x) = \frac{1.74683}{3}(5-x)^{3} + \frac{0.42531}{3}(x-4.5)^{3} + \left[\frac{1}{0.5} - 1.74683 x 0.08333\right](5-x) + \left[\frac{1.1}{0.5} - 0.42531 x 0.08333\right](x-4.5)$$

Cubic spline for second interval

$$f_2(x) = 0.582276(5-x)^3 + 0.14177(x-4.5)^3 + 1.854436(5-x) + 2.164558(x-4.5)$$

$$i=3$$

$$f_{3}(x) = \frac{f_{3}''(x_{2})}{6(x_{3}-x_{2})}(x_{3}-x)^{3} + \frac{f_{3}''(x_{3})}{6(x_{3}-x_{2})}(x-x_{2})^{3} + \left[\frac{f(x_{2})}{(x_{3}-x_{2})} - \frac{f''(x_{2})(x_{3}-x_{2})}{6}\right](x_{3}-x) + \left[\frac{f(x_{3})}{(x_{3}-x_{2})} - \frac{f''(x_{3})(x_{3}-x_{2})}{6}\right](x-x_{2})$$

$$f_{3}(x) = \frac{f_{3}''(5)}{6(7-5)}(7-x)^{3} + \frac{f_{3}''(7)}{6(7-5)}(x-5)^{3} + \left[\frac{f(5)}{(7-5)} - \frac{f''(5)(7-5)}{6}\right](7-x) + \left[\frac{f(7)}{(7-5)} - \frac{f''(7)(7-5)}{6}\right](x-5)$$

The second derivatives at the end knots are zero

$$f''(7) = f_3''(7) = 0$$

$$f_3(x) = \frac{0.42531}{12} (7-x)^3 + \left[\frac{1.1}{2} - 0.42531 x 0.33333\right] (7-x) + \left[\frac{2.5}{2}\right] (x-5)$$

Cubic spline for third interval

$$f_3(x) = 0.035442 (7-x)^3 + 0.408231 (7-x) + 1.25(x-5)$$

x=5.5 falls within the third interval

 $f_3(5.5) = 0.035442(7-5.5)^3 + 0.408231(7-5.5) + 1.25(5.5-5) = 1.356963$

Inverse Quadratic Interpolation method:

First iteration:

$$y = f(x) = e^{-x} - x = 0$$

$$x_{i-2} = 0.1 \qquad y_{i-2} = f(0.1) = e^{-0.1} - 0.1 = 0.8048$$

$$x_{i-1} = 0.5 \qquad y_{i-1} = f(0.5) = e^{-0.5} - 0.5 = 0.1065$$

$$x_i = 1.0 \qquad y_i = f(1.0) = e^{-1.0} - 1.0 = -0.6321$$

$$x_{i+1} = \frac{y_{i-1}y_i}{(y_{i-2} - y_{i-1})(y_{i-2} - y_i)} x_{i-2} + \frac{y_{i-2}y_i}{(y_{i-1} - y_{i-2})(y_{i-1} - y_i)} x_{i-1} + \frac{y_{i-2}y_{i-1}}{(y_i - y_{i-2})(y_i - y_{i-1})} x_i$$

$$\begin{aligned} x_{i+1} &= \frac{0.1065 \left(-0.6321\right)}{\left(0.8048 - 0.1065\right) \left(0.8048 - -0.6321\right)} 0.1 + \frac{0.8048 \left(-0.6321\right)}{\left(0.1065 - 0.8048\right) \left(0.1065 - -0.6321\right)} 0.5 \\ &+ \frac{0.8048 \left(0.1065\right)}{\left(-0.6321 - 0.8048\right) \left(-0.6321 - 0.1065\right)} 1.0 \end{aligned}$$

