CEN 212 FLUID MECHANICS

Assoc.Prof. Dr. Ayşe Karakeçili Assoc.Prof. Dr. Hakan KAYI

Ankara University
Chemical Engineering Department

Flow Past Immersed Objects

Fluid flow:

- 1. Inside conduits or pipes \checkmark
- 2. Around solid, immersed bodies

The flow of fluids outside immersed bodies occurs in many chemical applications such as: flow past spheres in settling, flow through packed beds in drying and filtration, flow past tubes in heat exchangers and so on.

Flow of fluid:

- ✓ The solid may be at rest; the fluid flowing past it
 (packed beds)
- ✓ The fluid may be at rest; the solid moving through it
- ✓ Both may be moving

Relative velocity

Flow Past Immersed Objects

Friction factor (f):

for flow through conduits

$$f = \frac{wall \ shear}{density \times velocity head}$$
$$f = \frac{\tau_w}{\rho(v^2/2)}$$

Drag coefficient (C_D) :

for immersed solids

$$C_{D} = \frac{F_{D} / A_{p}}{density \times velocity head}$$

$$C_D = \frac{F_D / A_p}{\rho(v^2 / 2)}$$

Flow Past Immersed Objects

For
$$Re_p > 20$$

Separation occurs

For high Re (10³ < Re_p <
$$3 \times 10^5$$
)
 $C_D = 0.40 - 0.45$
Front boundary layer is still laminar

For high Re (
$$Re_p > 3 \times 10^5$$
)
 $C_D = 0.10$
Front boundary layer becomes turbulent