Lecture 10: Eigenvalues and Eigenvectors

Elif Tan

Ankara University

-∢∃>

Definition (Eigenvalues and Eigenvectors)

Let $L: V \to V$ be a linear transformation and dimV = n. The scalar λ is called an eigenvalue of L if $\exists 0 \neq v \in V$ such that

$$L(\mathbf{v}) = \lambda \odot \mathbf{v},$$

and the vector v is called an eigenvector of L associated with the eigenvalue λ .

In \mathbb{R}^n , the eigenvalue problem reduces to determine whether $\lambda \odot v$ can be parallel to v.

The eigenvalue problem for linear transformation can be stated as a matrix representation of this linear transformation.

Definition (Characteristic polynomial)

Let A be $n \times n$ matrix. The characteristic polynomial of A is defined by

$$P_{A}(\lambda) := \det (\lambda I_{n} - A)$$
.

The equation

$$P_{A}\left(\lambda
ight)=\det\left(\lambda I_{n}-A
ight)=0$$

is called the characteristic equation of A. The roots of the characteristic polynomial are eigenvalues of A. Nonzero solutions of the homogenous linear system $(\lambda I_n - A) x = 0$ are called eigenvectors of A associated with the eigenvalue λ .

If we expand the determinant $P_{A}\left(\lambda\right)$ and collect terms in the same power of λ , we have

$$P_A(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + a_{n-2}\lambda^{n-2} + \dots + a_1\lambda + a_0.$$

Theorem (Cayley-Hamilton Theorem)

Every square matrix A satisfies its own characteristic equation, i.e.

$$P_A(A)=0.$$

In the following, we give some applications of the Cayley-Hamilton Theorem.

Example

Find the eigenvalues and corresponding eigenvectors for the matrix

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & 4 & 0 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{array} \right]$$

Solution:

$$P_{A}(\lambda) = \det (\lambda I_{n} - A) = 0$$

$$\Rightarrow \begin{vmatrix} \lambda - 1 & -4 & 0 \\ 0 & \lambda - 2 & -5 \\ 0 & 0 & \lambda - 3 \end{vmatrix} = 0$$

$$\Rightarrow (\lambda - 1) (\lambda - 2) (\lambda - 3) = 0.$$

The eigenvalues of A are $\lambda_1 = 1$, $\lambda_2 = 2$, and $\lambda_3 = 3$.

To find the eigenvectors corresponding to the eigenvalue λ₁ = 1, we solve the equation (λI_n - A) x = 0, *i.e.*

$$\begin{cases} (\lambda - 1) x_1 - 4x_2 = 0\\ (\lambda - 2) x_2 - 5x_3 = 0\\ (\lambda - 3) x_3 = 0 \end{cases}$$

where $\lambda = 1$. We find that $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} r \\ 0 \\ 0 \end{bmatrix}$, for $r \in \mathbb{R}$. That is, the eigenvectors corresponding to the eigenvalue $\lambda = 1$ are precisely the set of scalar multiples of the vector $v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

• Similarly, the eigenvectors corresponding to the eigenvalue $\lambda = 2$ and $\lambda = 3$ are

$$v_2 = \begin{bmatrix} 4\\1\\0 \end{bmatrix}$$
 and $v_3 = \begin{bmatrix} 10\\5\\1 \end{bmatrix}$,

respectively.

æ

- ◆ 臣 ▶ - ◆ 臣 ▶ - -

Example

Find the eigenvalues and corresponding eigenvectors for the matrix

$$A = \left[\begin{array}{rrrr} 1 & -1 & -1 \\ 0 & 3 & 2 \\ 0 & -1 & 0 \end{array} \right]$$

Solution:

$$P_A(\lambda) = \det (\lambda I_3 - A) = 0$$

$$\Rightarrow \begin{vmatrix} \lambda - 1 & 1 & 1 \\ 0 & \lambda - 3 & -2 \\ 0 & 1 & \lambda \end{vmatrix} = 0$$

$$\Rightarrow (\lambda - 1) (\lambda (\lambda - 3) + 2) = 0$$

$$\Rightarrow (\lambda - 1)^2 (\lambda - 2) = 0.$$

The eigenvalues of A are $\lambda_{1,2}=1$ (the multiplicity is 2) and $\lambda_3=2$.

• The eigenvectors corresponding to the eigenvalue $\lambda_{1,2} = 1$ are $v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$ • The eigenvectors corresponding to the eigenvalue $\lambda_2 = 2$ is

The eigenvectors corresponding to the eigenvalue
$$\lambda_3 = 2$$
 is
 $v_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.