Lecture 10: Eigenvalues and Eigenvectors

Elif Tan

Ankara University

Eigenvalues and Eigenvectors

Definition (Eigenvalues and Eigenvectors)

Let $L: V \rightarrow V$ be a linear transformation and $\operatorname{dim} V=n$. The scalar λ is called an eigenvalue of L if $\exists 0 \neq v \in V$ such that

$$
L(v)=\lambda \odot v
$$

and the vector v is called an eigenvector of L associated with the eigenvalue λ.

In \mathbb{R}^{n}, the eigenvalue problem reduces to determine whether $\lambda \odot v$ can be parallel to v.

Eigenvalues and Eigenvectors

The eigenvalue problem for linear transformation can be stated as a matrix representation of this linear transformation.

Definition (Characteristic polynomial)

Let A be $n \times n$ matrix. The characteristic polynomial of A is defined by

$$
P_{A}(\lambda):=\operatorname{det}\left(\lambda I_{n}-A\right) .
$$

The equation

$$
P_{A}(\lambda)=\operatorname{det}\left(\lambda I_{n}-A\right)=0
$$

is called the characteristic equation of A.
The roots of the characteristic polynomial are eigenvalues of A.
Nonzero solutions of the homogenous linear system $\left(\lambda I_{n}-A\right) x=0$ are called eigenvectors of A associated with the eigenvalue λ.

Eigenvalues and Eigenvectors

If we expand the determinant $P_{A}(\lambda)$ and collect terms in the same power of λ, we have

$$
P_{A}(\lambda)=\lambda^{n}+a_{n-1} \lambda^{n-1}+a_{n-2} \lambda^{n-2}+\cdots+a_{1} \lambda+a_{0} .
$$

Theorem (Cayley-Hamilton Theorem)

Every square matrix A satisfies its own characteristic equation, i.e.

$$
P_{A}(A)=0
$$

In the following, we give some applications of the Cayley-Hamilton Theorem.
(1) $\operatorname{det}(A)=(-1)^{n} a_{0}$.
(2) If $a_{0} \neq 0$, then A^{-1} exists and

$$
A^{-1}=\frac{-1}{a_{0}}\left(A^{n-1}+a_{n-1} A^{n-2}+\cdots+a_{2} A+a_{1} I_{n}\right) .
$$

(3) $A^{n}=-\left(a_{n-1} A^{n-1}+a_{n-2} A^{n-2}+\cdots+a_{1} A+a_{0} I_{n}\right)$.

Eigenvalues and Eigenvectors

Example

Find the eigenvalues and corresponding eigenvectors for the matrix

$$
A=\left[\begin{array}{lll}
1 & 4 & 0 \\
0 & 2 & 5 \\
0 & 0 & 3
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
P_{A}(\lambda) & =\operatorname{det}\left(\lambda I_{n}-A\right)=0 \\
& \Rightarrow\left|\begin{array}{ccc}
\lambda-1 & -4 & 0 \\
0 & \lambda-2 & -5 \\
0 & 0 & \lambda-3
\end{array}\right|=0 \\
& \Rightarrow(\lambda-1)(\lambda-2)(\lambda-3)=0 .
\end{aligned}
$$

The eigenvalues of A are $\lambda_{1}=1, \lambda_{2}=2$, and $\lambda_{3}=3$.

Eigenvalues and Eigenvectors

- To find the eigenvectors corresponding to the eigenvalue $\lambda_{1}=1$, we solve the equation $\left(\lambda I_{n}-A\right) x=0$, i.e.

$$
\left\{\begin{aligned}
(\lambda-1) x_{1}-4 x_{2} & =0 \\
(\lambda-2) x_{2}-5 x_{3} & =0 \\
(\lambda-3) x_{3} & =0
\end{aligned}\right.
$$

where $\lambda=1$. We find that $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}r \\ 0 \\ 0\end{array}\right]$, for $r \in \mathbb{R}$. That
is, the eigenvectors corresponding to the eigenvalue $\lambda=1$ are
precisely the set of scalar multiples of the vector $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.

Eigenvalues and Eigenvectors

- Similarly, the eigenvectors corresponding to the eigenvalue $\lambda=2$ and $\lambda=3$ are

$$
v_{2}=\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right] \text { and } v_{3}=\left[\begin{array}{c}
10 \\
5 \\
1
\end{array}\right]
$$

respectively.

Eigenvalues and Eigenvectors

Example

Find the eigenvalues and corresponding eigenvectors for the matrix

$$
A=\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 3 & 2 \\
0 & -1 & 0
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
P_{A}(\lambda) & =\operatorname{det}(\lambda / 3-A)=0 \\
& \Rightarrow\left|\begin{array}{ccc}
\lambda-1 & 1 & 1 \\
0 & \lambda-3 & -2 \\
0 & 1 & \lambda
\end{array}\right|=0 \\
& \Rightarrow(\lambda-1)(\lambda(\lambda-3)+2)=0 \\
& \Rightarrow(\lambda-1)^{2}(\lambda-2)=0
\end{aligned}
$$

The eigenvalues of A are $\lambda_{1,2}=1$ (the multiplicity is 2) and $\lambda_{3}=2$.

Eigenvalues and Eigenvectors

- The eigenvectors corresponding to the eigenvalue $\lambda_{1,2}=1$ are

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { and } v_{2}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]
$$

- The eigenvectors corresponding to the eigenvalue $\lambda_{3}=2$ is

$$
v_{3}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

