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Let A and B be sets. Theset Ax B={(a,b) | a€ A bec B} is the
cartesian product of A and B.

Definition (Relation)
A relation between sets A and B is a subset R of A x B.

o If (a, b) € R, then we say that " a is related to b” and denote it as

aRb.
@ Any relation between a set S to S is called a relation on S.

Definition (Equivalence relation)
A relation R on a set S is called an equivalence relation if the followings
are satisfied for all x,y,z€ S :

@ Reflexive: xRx.

@ Symmetric: If xRy, then yRx.
© Transitive: If xRy and yRz, then xRz.
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Partitions and Equivalence Relations

A partition of a set S is a collection of nonempty subsets of S such that
every element of S is in exactly one of the subsets. These subsets are
called as the cells of the partition.

Theorem

Let S be a nonempty set and let ~ be an equivalence relation on S. Then
~ yields a partition of S where

a={xeS|x~a}.
Also each partition of S gives rise to an equivalence relation ~ on S where

a~ b< aandb are in the same cell of partition.

Each cell in the partition arising from an equivalence relation is an
equivalence class.
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Functions

If every element of A is related to exactly one element of B, then we have
the relation, called as function.

Let A and B be nonempty sets. f is called a function from A to B,
denoted f : A — B, if f is a relation from A to B with the property that
every element a in A is the first coordinate of exactly one ordered pair in

f. That is,

© For each element a € A, there is an element b € B such that
(a,b) € f. (Va€ A, 3b € B such that f (a) = b)

Q@ If (a,b),(a,c) €f, then b=c.
(Iff(a)=band f(a) =c=b=c)

Example: Let A= {1,2,3} ,B={a, b,c, d}.
f={(1,b),(2,d),(3,b)} is a function
g=1{(1,a),(2,¢),(3,b),(2 a)} is not a function.
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Functions

Let f : A — B be a function

@ A is called the domain of f and B is called the codomain of f.
e Therange of fis f (A) = {f (a) | a € A}.
o fis called onto if Vb € B, Ja € A such that f (a) = b.

onto

FiAZY Be f(A)=B
o f: A= Bif f(a) = f(b) implies a= b for all a, b € A.

Let f : A— B be a function and D C A, E C B.

o f(D)={f(a)| a€ D} C Bis called the range of f under D.
o (D)= {a|f(a) € E} C Ais called the inverse image
(preimage) of f under E.
Theset f1({b})={acA|f(a)=b} CA
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Functions

For a relation R : A — B, the inverse relation R~1 : B — A is defined by
Rt ={(b,a)| (ab) € R}.

Every function f : A — B is also a relation from A to B, and so there is
an inverse relation f~! from B to A.

We need the following conditions for the inverse relation f ! to be a
function.

© Vb € B,3a € Asuch that (b,a) € f~1. (This implies f must be onto)
Q If (b,a),(b,c) € f1, then a= c. (This implies f must be 1-1)

Thus if f: A— B be a 1-1 and onto function, then f 1 : B — Ais
referred to as the inverse function of f.
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Functions

Remarks:

1. Let A and B be finite nonempty sets.

o f: A B=|Al < |B|

onto

o f:A = B=|Al >|B]|
o F: A B = |A =B

2. Let A and B be finite nonempty sets and |A| = |B|. Then

fisl—1< fis onto.
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Binary Operations

A binary operation * on a set S is a function from S X S to S.

x: SxS—S
(a,b) — axb

For each (a, b) € S x S, we denote the element * ((a, b)) of S by ax* b.

V.

@ Let * be a binary operation on S and let H C S. Then the subset H
is closed under x if ax b for all a,b € H.
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Binary Operations

Definition

Let denote (S, *)consists of a nonempty set S and a binary operation * on
S. We refer to (S, *) as an algebraic structure.

Properties of an algebraic structure (S, *) :

@ Associative: ax (bxc) = (axb)*c forall a,b,c € S.
@ lIdentity element: Jde € S such that axe=exa=aforallac S.

@ Inverse element: For each a € §,3a’ € S such that
axa =ad xa=ce.

Q@ Commutative: axb=bxaforall a,b€S.
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Congruence Modulo n

Let n € Z7" and x,y € Z. The relation " = (mod n) " defined by
x=y(modn) < n|x—y

is an equivalence relation on Z™ and called as congruence modulo n.

The equivalence classes are called as residue classes modulo n (integers
modulo n).

For x € Z,

x|

{yeZ|y=x(modn)}
= {yeZn|ly—x}
— {yeZ]y—x:nk,ElkEZ}
= {x+nk|keZ}.

The set of all congruence classes is denoted by

Z, = {G,T,Z...,n—l}.

and called as the set of residue classes modulo n.
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Congruence Modulo n

@ The operations +, and -, on Z, are defined by

atnb : =a+bh
an.b : =ab
® 3 € Z, has multiplicative inverse modulo n < gcd (a, n) = 1.
e Z; =1{a|gcd(a n) =1} is called the prime residue classes.
|Z}| = ¢ (n) where ¢ is Euler-phi function and defined as the
number of positive integers a < n such that ged (a, n) = 1.
Q¢(p)=p-1
Q@¢(p)=p —pt=p (1—%)
Q If gcd (m, n) =1, then ¢ (mn) = ¢ (m) ¢ (n)
Q If m= pi'p? ...p/:k, then
¢ (m) =9 (p') ¢ (7). (py)

rn,r

=pi'pR ... Py (1—%) (1—%)---(1—&).
o Zy=27,—{0}.|Z5| =¢(p)=p—1.
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