Lecture 2: Groups

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

э

▶ < ∃ ▶

Definition

Let G be a nonempty set and the binary operation * defined on G. (G, *) is called a **group** if the following conditions are satisfied: G_1) Associative: (a * b) * c = a * (b * c) for all $a, b, c \in G$. G_2) Identity element: $\exists e \in G$ such that a * e = e * a = a for all $a \in G$. G_3) Inverse element: For each $a \in G, \exists a' \in G$ such that a * a' = a' * a = e.

For simplicity we denote a group (G, *) as G.

Remark:

- The identity element (zero element) of the group G is e.
- The inverse of an element a is a'.
- A group G is **abelian** if its binary operation is commutative, that is,

$$a * b = b * a$$
 for all $a, b \in G$.

• For conventional notation, the inverse of an element *a* is a^{-1} for (G, .) and the inverse of an element *a* is -a for (G, +).

Groups

Examples:

- 1. $(\mathbb{Z}^+, +)$ is not a group. (No identity element)
- 2. $(\mathbb{Z}_{\geq 0}, +)$ is not a group. (No inverse element)
- 3. $(\mathbb{Z},+)$, $(\mathbb{R},+)$, $(\mathbb{Q},+)$, $(\mathbb{C},+)$ are commutative groups.
- 4. (\mathbb{Z}^+, \cdot) is not a group. (1 is identity element, but no inverse of 3)
- **5.** (\mathbb{Q}^+, \cdot) , (\mathbb{R}^+, \cdot) , (\mathbb{Q}^*, \cdot) , (\mathbb{R}^*, \cdot) , (\mathbb{C}^*, \cdot) are commutative groups.
- **6.** $(M_{m \times n}(\mathbb{R}), \oplus)$ is an abelian group.
- 7. $(M_n(\mathbb{R}), \odot)$ is not a group. (Zero matrix has no inverse)
- **8.** $(GL(n, \mathbb{R}) = \{A_{n \times n} \mid \det A \neq 0\}, \odot)$ is a noncommutative group.

Groups

9. $(\mathbb{Z}_n, +_n)$ is a commutative group.

10. $(\mathbb{Z}_{n, \cdot, n})$ is not a group. ($\overline{0}$ has no inverse)

11.
$$(\mathbb{Z}_n^{\star} = \{\overline{a} \in \mathbb{Z}_n \mid \text{gcd}(a, n) = 1\}, ., n)$$
 is a group.

12. $(V_4 = \{e, a, b, c \mid a^2 = b^2 = e, ab = c\}, \cdot)$ is a group, called as Klein-4 group.

13. $(Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}, \cdot)$ is a noncommutative group, called as quaternion group, with multiplication defined as

$$i^2 = j^2 = k^2 = ijk = -1.$$

Let (G, *) be a group. For $n \in \mathbb{Z}$, $a \in G$,

$$a^{n} = \begin{cases} \underbrace{a * a * \cdots * a}_{n}, & n > 0\\ e, & n = 0\\ \underbrace{a' * a' * \cdots * a'}_{|n|}, & n < 0. \end{cases}$$

個 ト イヨト イヨト

Let (G, *) be a group. Then we have the followings:

- The cancellation laws hold: For all a, b, c ∈ G,
 The left cancellation law: If a * b = a * c, then b = c.
 The right cancellation law: If b * a = c * a, then b = c.
- For a, b ∈ G, the linear equations a * x = b and y * a = b have unique solutions in G.
 Remark: By means of this result, one can say that every element of G appears exactly once in every column in the group table of G.
- *G* has a unique identity.
- Each element in G has a unique inverse.

• For all
$$a, b \in G$$
, $(a * b)' = b' * a'$.

Theorem

Let $\emptyset \neq G$ and * be a binary operation on G. If (i) * is associative (ii) Left identity: $\exists e \in G$ such that e * x = x for all $x \in G$ (iii) Left inverse: For each $a \in G$, $\exists a' \in G$ such that a' * a = e, then (G, *) is a group.

Theorem

Let $\emptyset \neq G$ and * be a binary operation on G. If (i) * is associative (ii) a * x = b and y * a = b have solutions in G for all $a, b \in G$, then (G, *) is a group.

Theorem

Let $\emptyset \neq G$ is **finite** and * be a binary operation on G. If (i) * is associative (ii) the cancellation laws hold, then (G, *) is a group.

Remarks:

- Let (G, *) be a group. If x * x = x for x ∈ G, then x is called an idempotent element. Show that a group G has exactly one idempotent.
- Let (G, *) be a group. If x * x = e for all $x \in G$, then G is abelian.
- Let (G, .) be a group. If $x^{-1} = x$ for all $x \in G$, then G is abelian.