Lecture 3: Elementary Properties of Groups

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

Let (G, \cdot) be a group and $a \in G$. For $n \in \mathbb{Z}$,

Let (G, +) be a group and $a \in G$. For $n \in \mathbb{Z}$,

$$na = \begin{cases} \underbrace{a + a + \dots + a}_{n}, & n > 0\\ 0, & n = 0\\ \underbrace{(-a) + \dots + (-a)}_{|n|}, & n < 0. \end{cases}$$

For conventional notation, we will use the multiplicative notation \cdot .

Order of an element

Definition

A group (G, \cdot) is called a finite group if G has only finite number of elements. The **order**, written by |G|, of a group G is the number of elements of G. A group with infinite number of elements is called as an infinite group.

Let (G, \cdot) be a finite group and $a \in G$.

$$a \in G \stackrel{G \text{ group}}{\Rightarrow} a \cdot a = a^2 \in G, \dots, a^m \in G \text{ for all } m \ge 1$$

$$\stackrel{G \text{ finite}}{\Rightarrow} \text{ the elements } a, a^2, \dots, a^m, \dots \text{ can not be all distinct}$$

$$\Rightarrow a^i = a^j \text{ for some integer } 0 < i < j$$

$$\stackrel{j-i=:n}{\Rightarrow} a^{j-i} = a^n = e \text{ for } n \in \mathbb{Z}^+.$$

Thus for a finite group G, $a^n = e$ for some $n \in \mathbb{Z}^+$. Also if G is an infinite group, it may still possible that $a^n = e$ for some $n \in \mathbb{Z}^+$. For example, $(-1)^2 = 1$ in (\mathbb{R}^*, \cdot) .

Definition

Let (G, \cdot) be a group and $a \in G$. If there exists a positive integer n such that $a^n = e$, then the smallest such positive integer is called the **order** of a, and denoted by $\circ(a)$. If no such positive integer exists, then we say that a is of infinite order.

In other words,

 \circ (*a*) = *n* \Leftrightarrow *n* is the smallest positive integer such that $a^n = e$.

If we consider the group (G, +), then

 $\circ(a) = n \Leftrightarrow n$ is the smallest positive integer such that na = e.

Remark: The order of an element helps us to determine the structure of the group itself.

・ロト ・四ト ・ヨト ・ヨト

Order of an element

Examples:

1. In (\mathbb{R}^*,\cdot) , $\circ\,(-1)=2,$ but all other elements except ± 1 are infinite order.

2. In $(\mathbb{Z}_6, +_6)$, $\circ(\overline{a}) = n \Leftrightarrow n$ is the smallest positive integer such that $n\overline{a} = \overline{0}$. Thus

$$\circ (\overline{0}) = 0, \circ (\overline{1}) = 6, \circ (\overline{2}) = 3, \circ (\overline{3}) = 2, \circ (\overline{4}) = 3, \circ (\overline{5}) = 6.$$

3. In (Q_8, \cdot) ,

$$\circ(1) = 1, \circ(-1) = 2, \circ(i) = 4, \circ(-i) = 4,$$

 $\circ(j) = 4, \circ(-j) = 4, \circ(k) = 4, \circ(-k) = 4.$

4. In (V, \cdot) , $\circ(e) = 1, \circ(a) = \circ(b) = \circ(c) = 2.$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Order of an element

Let (G, \cdot) be a group and let $a \in G$.

- If $\circ(a)$ is infinite, then $\circ(a^k)$ is also infinite for all $k \in \mathbb{Z}^+$.
- If \circ (a) is finite, then we can compute the \circ (a^k) by using the following theorem.

Theorem

Let
$$(G, \cdot)$$
 be a group and let $\circ (a) = n$ for $a \in G$
(*i*) If $a^m = e$ for some $m \in \mathbb{Z}^+$, then $n \mid m$.
(*ii*) For every $k \in \mathbb{Z}^+$, $\circ (a^k) = \frac{n}{\gcd(k,n)}$

Example: In $(\mathbb{Z}_6, +_6)$, $\circ(\overline{1}) = 6$. So

$$\circ (\overline{4}) = \circ (4.\overline{1}) = \frac{6}{\operatorname{gcd}(4,6)} = 3.$$

Definition

A group (G, \cdot) is called a **torsion group** if every element of G is of finite order.

If every nonidentity element of G is of infinite order, then (G, \cdot) is called a **torsion-free group.**

Examples:

- 1. $(\mathbb{R},+)$, (\mathbb{R}^+,\cdot) , (\mathbb{Q}^+,\cdot) are torsion-free groups.
- **2.** $(\mathbb{Z}_6, +_6)$ is torsion group.
- **3.** (\mathbb{R}^*, \cdot) is neither a torsion group nor a torsion-free group.

Remarks:

- Let (G, ·) be a group and let a, b ∈ G.
 If o (a) = m, o (b) = n ⇒ o (ab) < ∞ or o (ab) = ∞.
- 2. Let (G, ·) be an abelian group and let a, b ∈ G.
 If ∘ (a) = m, ∘ (b) = n ⇒ ∘ (ab) | mn
 If ∘ (a) = m, ∘ (b) = n, gcd (m, n) = 1 ⇒ ∘ (ab) = mn
 - If $\circ(a) = m$, $\circ(b) = n \Rightarrow \circ(ab) \mid \operatorname{lcm}(m, n)$.

▲圖▶ ▲ 圖▶ ▲ 圖▶ …