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Let (G,-) be a group and a€ G. Forne€ Z,

a-a----- a, n>0
*/
n
an e e, n=
at-al.... al n<o.
||

Let (G, +) be a group and a € G. For n € Z,
ata+---+a, n>0

n
na = 0, n=
(=a)+---+(—a), n<O.
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Order of an element

Definition

A group (G, ) is called a finite group if G has only finite number of
elements. The order, written by |G|, of a group G is the number of
elements of G. A group with infinite number of elements is called as an
infinite group.

Let (G, -) be a finite group and a € G.

G
acG % 3.a=32€G,...,a"cGforall m>1
Gf it .
X" the elements a, 32 ..,a™m, ... can not be all distinct
= a' = & for some integer 0 < i < j
j— l—n

d T =3a"=eforneZ".

Thus for a finite group G, a" = e for some n € Z*. Also if G is an
infinite group, it may still possible that a” = e for some n € Z*. For
example, (—1)? = 1in (R*,-).
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Order of an element

Definition

Let (G, -) be a group and a € G. If there exists a positive integer n such
that a” = e, then the smallest such positive integer is called the order of
a, and denoted by o (a) . If no such positive integer exists, then we say
that a is of infinite order.

In other words,

o(a) = n < nis the smallest positive integer such that a" = e.
If we consider the group (G, +), then

o(a) = n < nis the smallest positive integer such that na = e.

Remark: The order of an element helps us to determine the structure of
the group itself.
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Order of an element

Examples:
1. In (R*,-), o(—1) = 2, but all other elements except 1 are infinite

order.
2. In (Ze,+6), 0(3a) = n < nis the smallest positive integer such that

na = 0. Thus

3. In (Qg, ) )
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Order of an element

Let (G,-) be a group and let a € G.

e If o (a) is infinite, then o (a¥) is also infinite for all k € Z*.

e If o(a) is finite, then we can compute the o (ak) by using the
following theorem.

Let (G, ) be a group and let o (a) = n for a € G.
(i) If a™ = e for some m € Z™", then n | m.
(ii) For every k € Z, o (a*) =

~ gcd(k,n)

Example: In (Zs,+6), o (1) = 6. So

0(4)20(4.1):M:3.

Ali Biilent Ekin, Elif Tan (Ankara University) Elementary Properties of Groups



Definition

A group (G, -) is called a torsion group if every element of G is of finite
order.

If every nonidentity element of G is of infinite order, then (G, ) is called a
torsion-free group.

Examples:

1. (R, +),(R*,-),(Q",) are torsion-free groups.
2. (Ze, +¢) is torsion group.
3. (R*,-) is neither a torsion group nor a torsion-free group.
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Order of an element

Remarks:

1. Let (G, ) be a group and let a, b € G.
e Ifo(a)=m, o(b)=n=o(ab) < o or o(ab) = co.

2. Let (G, ) be an abelian group and let a, b € G.
e Ifo(a)=m, o(b)=n=o(ab)| mn
e Ifo(a)=m, o(b)=n,ged(m, n)=1= o(ab) = mn
e Ifo(a)=m, o(b)=n= o(ab)|lem(m, n).
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