Lecture 3: Elementary Properties of Groups

Prof. Dr. Ali Bülent EKİN
Doç. Dr. Elif TAN

Ankara University

Let (G, \cdot) be a group and $a \in G$. For $n \in \mathbb{Z}$,

$$
a^{n}=\left\{\begin{array}{cc}
\underbrace{a \cdot a \cdots \cdots a,}_{n} & n>0 \\
\underbrace{a^{-1} \cdot a^{-1} \cdots \cdots a^{-1}}_{|n|}, & n=0 \\
\underbrace{}_{\mid c},
\end{array}\right.
$$

Let $(G,+)$ be a group and $a \in G$. For $n \in \mathbb{Z}$,

$$
n a=\left\{\begin{array}{cc}
\underbrace{a+a+\cdots+a}_{n}, & n>0 \\
0, & n=0 \\
\underbrace{(-a)+\cdots+(-a)}_{|n|}, & n<0 .
\end{array}\right.
$$

For conventional notation, we will use the multiplicative notation \cdot.

Order of an element

Definition

A group (G, \cdot) is called a finite group if G has only finite number of elements. The order, written by $|G|$, of a group G is the number of elements of G. A group with infinite number of elements is called as an infinite group.

Let (G, \cdot) be a finite group and $a \in G$.

$$
a \in G \stackrel{G}{g} \stackrel{\text { group }}{\Rightarrow} a \cdot a=a^{2} \in G, \ldots, a^{m} \in G \text { for all } m \geq 1
$$

$\stackrel{G}{\Rightarrow}$ finite the elements $a, a^{2}, \ldots, a^{m}, \ldots$ can not be all distinct $\Rightarrow a^{i}=a^{j}$ for some integer $0<i<j$ $\stackrel{j-i=: n}{\Rightarrow} a^{j-i}=a^{n}=e$ for $n \in \mathbb{Z}^{+}$.
Thus for a finite group $G, a^{n}=e$ for some $n \in \mathbb{Z}^{+}$. Also if G is an infinite group, it may still possible that $a^{n}=e$ for some $n \in \mathbb{Z}^{+}$. For example, $(-1)^{2}=1$ in $\left(\mathbb{R}^{*}, \cdot\right)$.

Order of an element

Definition

Let (G, \cdot) be a group and $a \in G$. If there exists a positive integer n such that $a^{n}=e$, then the smallest such positive integer is called the order of a, and denoted by $\circ(a)$. If no such positive integer exists, then we say that a is of infinite order.

In other words,
$\circ(a)=n \Leftrightarrow n$ is the smallest positive integer such that $a^{n}=e$.
If we consider the group $(G,+)$, then
$\circ(a)=n \Leftrightarrow n$ is the smallest positive integer such that na $=e$.
Remark: The order of an element helps us to determine the structure of the group itself.

Order of an element

Examples:

1. In $\left(\mathbb{R}^{*}, \cdot\right), \circ(-1)=2$, but all other elements except ± 1 are infinite order.
2. In $\left(\mathbb{Z}_{6},+_{6}\right), \circ(\bar{a})=n \Leftrightarrow n$ is the smallest positive integer such that $n \bar{a}=\overline{0}$. Thus

$$
\begin{aligned}
& \circ(\overline{0})=0, \circ(\overline{1})=6, \circ(\overline{2})=3, \\
& \circ(\overline{3})=2, \circ(\overline{4})=3, \circ(\overline{5})=6 .
\end{aligned}
$$

3. $\ln \left(Q_{8}, \cdot\right)$,

$$
\begin{aligned}
& \circ(1)=1, \circ(-1)=2, \circ(i)=4, \circ(-i)=4 \\
& \circ(j)=4, \circ(-j)=4, \circ(k)=4, \circ(-k)=4 .
\end{aligned}
$$

4. $\ln (V, \cdot)$,

$$
\circ(e)=1, \circ(a)=\circ(b)=\circ(c)=2
$$

Order of an element

Let (G, \cdot) be a group and let $a \in G$.

- If $\circ(a)$ is infinite, then $\circ\left(a^{k}\right)$ is also infinite for all $k \in \mathbb{Z}^{+}$.
- If $\circ(a)$ is finite, then we can compute the $\circ\left(a^{k}\right)$ by using the following theorem.

Theorem

Let (G, \cdot) be a group and let $\circ(a)=n$ for $a \in G$.
(i) If $a^{m}=e$ for some $m \in \mathbb{Z}^{+}$, then $n \mid m$.
(ii) For every $k \in \mathbb{Z}^{+}, \circ\left(a^{k}\right)=\frac{n}{\operatorname{gcd}(k, n)}$

Example: $\ln \left(\mathbb{Z}_{6},+6\right), \circ(\overline{1})=6$. So

$$
\circ(\overline{4})=\circ(4 . \overline{1})=\frac{6}{\operatorname{gcd}(4,6)}=3
$$

Torsion Group

Definition

A group (G, \cdot) is called a torsion group if every element of G is of finite order.
If every nonidentity element of G is of infinite order, then (G, \cdot) is called a torsion-free group.

Examples:

1. $(\mathbb{R},+),\left(\mathbb{R}^{+}, \cdot\right),\left(\mathbb{Q}^{+}, \cdot\right)$ are torsion-free groups.
2. $\left(\mathbb{Z}_{6},+_{6}\right)$ is torsion group.
3. $\left(\mathbb{R}^{*}, \cdot\right)$ is neither a torsion group nor a torsion-free group.

Order of an element

Remarks:

1. Let (G, \cdot) be a group and let $a, b \in G$.

- If $\circ(a)=m, \circ(b)=n \Rightarrow \circ(a b)<\infty$ or $\circ(a b)=\infty$.

2. Let (G, \cdot) be an abelian group and let $a, b \in G$.

- If $\circ(a)=m, \circ(b)=n \Rightarrow \circ(a b) \mid m n$
- If $\circ(a)=m, \circ(b)=n, \operatorname{gcd}(m, n)=1 \Rightarrow \circ(a b)=m n$
- If $\circ(a)=m, \circ(b)=n \Rightarrow \circ(a b) \mid \operatorname{lcm}(m, n)$.

