Lecture 4: Subgroups

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

э

3 1 4 3 1

Definition

Let (G, \cdot) be a group and $\emptyset \neq H \subseteq G$. (H, \cdot) is called a **subgroup** of G (denoted by $H \leq G$) if H is a group with the operation of G.

Examples:

1. Every group has at least two subgroups: $\{e\} \leq G$ and $G \leq G$. The subgroups except G are called the **proper** subgroups and the subgroups except $\{e\}$ are called the **nontrivial** subgroups.

2.
$$(\mathbb{Z}, +) \leq (\mathbb{R}, +)$$

3. $(M_2(2\mathbb{Z}), \oplus) \leq (M_2(\mathbb{Z}), \oplus)$
4. $(\{\overline{0}, \overline{3}, \}, +_4) \nleq (\mathbb{Z}_4, +_4)$
5. $(\{\overline{0}, \overline{2}, \overline{4}\}, +_6) \leq (\mathbb{Z}_6, +_6)$
6. Klein-4 group $(V_4 = \{e, a, b, c\}, \cdot)$ has three nontrivial subgroups:
 $\{e, a\} \leq V_4, \ \{e, b\} \leq V_4, \ \{e, c\} \leq V_4.$
Note that $\{e, a, b\} \nleq V_4$, since $ab = c \notin V_4$.

Theorem (Subgroup Test-1)

Let
$$(G, \cdot)$$
 be a group and $\emptyset \neq H \subseteq G$.
 $H \leq G \Leftrightarrow (i) \forall a, b \in H, ab \in H$
 $(ii) \forall a \in H, a^{-1} \in H$.

Theorem (Subgroup Test-2)

Let
$$(G, \cdot)$$
 be a group and $\emptyset \neq H \subseteq G$.
 $H \leq G \Leftrightarrow \forall a, b \in H, ab^{-1} \in H$.

Image: Image:

æ

★ 문 ► ★ 문 ►

Theorem

Let (G, \cdot) be a group and $\emptyset \neq H \subseteq G$. If H is finite and closed under the operation of G, then $H \leq G$.

Example: $(Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}, \cdot)$ is a group, called as quaternion group, with multiplication defined as

$$i^2 = j^2 = k^2 = ijk = -1$$

 $ij = k = -ji, jk = i = -kj.$

Note that (Q_8, \cdot) is a nonabelian group, since $ij \neq ji$.

H₁ = {±1, ±i} ≤ Q₈, since H₁ is finite and closed under .
H₂ = {±1, ±j} ≤ Q₈, since H₂ is finite and closed under .

Subgroups

Theorem

Let (G, \cdot) be a group. If $H_1 \leq G$ and $H_2 \leq G,$ then

- $I_1 \cap H_2 \leq G.$
- $H_1 \cup H_2 \nleq G.$

Example: Consider the quaternion group. $H_1 = \{\pm 1, \pm i\} \leq Q_8$ and $H_2 = \{\pm 1, \pm j\} \leq Q_8$, but $H_1 \cup H_2 = \{\pm 1, \pm i, \pm j\} \leq Q_8$.

Theorem

Let (G, \cdot) be a group and $\{H_i\}_{i \in I}$ be a collection of subgroups of G. Then

$$\bigcap_{i\in I} H_i \leq G.$$

イロト イ押ト イヨト イヨト

Theorem

Let (G, \cdot) be a group and let $H, K \leq G$.

- $\bullet H \cup K \leq G \Leftrightarrow H \subseteq K \text{ or } K \subseteq H.$
- **2** $HK \leq G \Leftrightarrow HK = KH$ where

$$HK = \{hk \mid h \in H, k \in K\}.$$

③ If G is abelian, then $HK \leq G$.

Note: HK = KH does not mean that their elements are commutative. It means that $h_1k_1 = k_2h_2$; $\exists h_1, h_2 \in H$, $\exists k_1k_2 \in K$.

Subgroups

Definition

Let $(G_1, *_1)$ and $(G_2, *_2)$ be any two groups. $G_1 \times G_2 = \{(g_1, g_2) \mid g_1 \in G_1, g_2 \in G_2\}$ is a group with the operation * defined componentwise:

$$(g_1,g_2)st(h_1,h_2)=(g_1st_1h_1,g_2st_2h_2)$$
 .

The group $(G_1 \times G_2, *)$ is called the **direct product** of groups G_1 and G_2 .

Example: $(\mathbb{Z} \times \mathbb{Z}, +)$ is a commutative group.

Theorem

Let G_1 and G_2 be any two groups and let $H \leq G_1$, $K \leq G_2$. Then

$$H \times K \leq G_1 \times G_2.$$

Ali Bülent Ekin, Elif Tan (Ankara University)

Subgroups

Theorem

Let (G, \cdot) be a group. $M(G) := \{a \in G \mid ag = ga, for all g \in G\}$ is called the **center** of the group G.

Theorem

 (G, \cdot) be a group. $M_G(a) := \{x \in G \mid ax = xa\}$ is called the centralizer of the group G. $M_G(a) \leq G$.

Theorem

$$M(G) = \bigcap_{a \in G} M_G(a).$$

Ali Bülent Ekin, Elif Tan (Ankara University)

Theorem

All subgroups of \mathbb{Z} are of form $n\mathbb{Z}$ for $n \in \mathbb{Z}_{\geq 0}$.

2

イロト イヨト イヨト イヨト