Lecture 5: Cyclic Groups

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

э

- ∢ ∃ ▶

Theorem

Let (G, \cdot) be a group and let $a \in G$. Then $H = \{a^n \mid n \in \mathbb{Z}\} \leq G$. Similarly, if (G, +) is a group, then $H = \{na \mid n \in \mathbb{Z}\} \leq G$.

Remark: The subgroup $H = \{a^n \mid n \in \mathbb{Z}\}$ is the smallest subgroup of *G* that contains *a*.

Definition

Let (G, \cdot) be a group and let $a \in G$. Then the subgroup $H = \{a^n \mid n \in \mathbb{Z}\}$ of G is called the (cyclic) **subgroup generated by** a and denoted by $\langle a \rangle$.

If the cyclic subgroup $\langle a \rangle$ of G is finite, then $\circ(a) = |\langle a \rangle|$. Otherwise we say that a is infinite order.

イロト イ理ト イヨト イヨト

Cyclic Groups

Definition (Cyclic group)

Let (G, \cdot) be a group and $a \in G$.

If $\langle a \rangle = G \Rightarrow G$ is called **cyclic group**.

In this case, the element $a \in G$ is called a **generator** for G and it is said that a **generates** G.

If G is a finite cyclic group $\Leftrightarrow \exists a \in G$ such that $\circ(a) = |G|$. Examples:

6. $(\mathbb{Q}, +)$ is not cyclic.

Our goal is describe all cyclic grous and all subgroups of them. Cyclic groups can be seen as the fundamental building blocks for all finite abelian groups.

Theorem

- Every cyclic group is abelian.
- A subgroup of a cyclic group is also cyclic.
- Let (G, \cdot) be a cyclic group. If

|G| is infinite $\Rightarrow G \simeq \mathbb{Z}$

$$|G| = n \Rightarrow G \simeq \mathbb{Z}_n.$$

Theorem

Let
$${\sf G}=\langle {\sf a}
angle$$
 and $|\langle {\sf a}
angle|={\sf n}$. Then

•
$$\langle a^s \rangle = H \leq G$$
 such that $|\langle a^s \rangle| = \frac{n}{\gcd(n,s)}$.

$$\ \ \, {\it O} \ \ \, {\it G} = \langle {\it a}^m \rangle \Leftrightarrow \gcd\left({\it n},{\it m}\right) = 1.$$

• The number of generators of G is $\phi(n)$.

- ∢ ∃ ▶

Remark:

For finite cyclic groups, we have the following result which is a special case of the Lagrange Theorem.

• Let (G, \cdot) be a cyclic group and |G| = n. If $H < G \Rightarrow |H| | |G|$. Note that $H = \langle a^s \rangle$ for $s \in \mathbb{Z}$ such that s | n.

The converse of this result also holds for all finite cyclic groups.

 Let (G, ·) be a cyclic group and |G| = n. Then every positive divisor d of n, there exists a unique subgroup of G of order d.

(< 3) > (3)

Example: Find the subgroups and generators of \mathbb{Z}_6 .

Since the positive divisors of $|\mathbb{Z}_6|=6$ are 1, 2, 3, 6. Thus the subgroups of \mathbb{Z}_6 are

$$\begin{array}{rcl} \langle \overline{1} \rangle & = & \left\{ \overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5} \right\} = \mathbb{Z}_{6} \\ \langle \overline{2} \rangle & = & \left\{ \overline{0}, \overline{2}, \overline{4} \right\} \\ \langle \overline{3} \rangle & = & \left\{ \overline{0}, \overline{3} \right\} \\ \langle \overline{6} \rangle & = & \langle \overline{0} \rangle = \left\{ \overline{0} \right\} \end{array}$$

Since m = 1, 5 such that gcd (m, 6) = 1, the generators of \mathbb{Z}_6 are $\langle \overline{1} \rangle = \langle \overline{5} \rangle$.

▲圖▶ ▲屋▶ ▲屋▶

Cyclic Groups

Remarks:

1. Let $G = \langle a \rangle$ be a cyclic group and the order of G is infinite. Then

- The order of all subgroups of G are infinite.
- All generators are a and a^{-1} .

Example: $(\mathbb{Z}, +)$ is an infinite cyclic group and $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$.

2. For positive integers n, m, we have

•
$$\langle n \rangle \cap \langle m \rangle = \langle \operatorname{lcm}(n, m) \rangle$$

• $\langle n \rangle + \langle m \rangle = \langle \operatorname{gcd}(n, m) \rangle$

Example:

$$egin{array}{rll} \langle 2
angle \cap \langle 3
angle &=& \langle 6
angle = 6\mathbb{Z} \ \langle 2
angle + \langle 3
angle &=& \{ 2a + 3b \mid a, b \in \mathbb{Z} \} = \langle 1
angle = \mathbb{Z}. \end{array}$$

通 ト イヨ ト イヨ ト

Cyclic Groups

3. Consider the direct product

$$G_1 \times G_2 = \{(g_1, g_2) \mid g_1 \in G_1, g_2 \in G_2\}.$$

•
$$\circ ((g_1, g_2)) = \operatorname{lcm} (\circ (g_1), \circ (g_2))$$

• If G_1 and G_2 are cyclic, then $G_1 \times G_2$ need not be cyclic.

Examples:

۰

- **1.** $\mathbb{Z}_2 \times \mathbb{Z}_3$ is cyclic since $\mathbb{Z}_2 \times \mathbb{Z}_3 = \langle (\overline{1}, \overline{1}) \rangle$
- **2.** $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not cyclic since there is no element of order 4.
- **3.** $\mathbb{Z}_2 \times \mathbb{Z}_4$ is not cyclic since there is no element of order 8.

• Let G_1 and G_2 are finite cyclic groups. Then

$$G_1 imes G_2$$
 is cyclic $\Leftrightarrow \mathsf{gcd}\left(\left| G_1 \right|, \left| G_2 \right| \right) = 1.$

$$\mathbb{Z}_m imes \mathbb{Z}_n$$
 is cyclic $\Leftrightarrow \mathsf{gcd}\,(\mathit{m},\mathit{n}) = 1$

4. Every group is the union of its cyclic subgroups. Since every element of the group generates a cyclic subgroup that contains itself.

Example: The Klein-4 group $(V_4 = \{e, a, b, c \mid a^2 = b^2 = c^2 = e\}, \cdot)$ is a union of its cyclic subgroups

$$egin{array}{rcl} \langle {\sf a}
angle &=& \{{\sf e},{\sf a} \} \ \langle {\sf b}
angle &=& \{{\sf e},{\sf b} \} \ \langle {\sf c}
angle &=& \{{\sf e},{\sf c} \} \, , \end{array}$$

that is

$$V_4 = \langle a
angle \cup \langle b
angle \cup \langle c
angle$$
.

Note that the subgroups of V_4 is cyclic, but V_4 is not cyclic.

Generating Sets

Let G be a group.

- For $a \in G$, $\langle a \rangle \leq G$ is the smallest subgroup that containing a.
- For a₁, a₂ ∈ G, (a₁, a₂) ≤ G is the smallest subgroup that containing a₁, a₂.
- In general, let $S \subseteq G$. Then $\langle S \rangle \leq G$ is the smallest subgroup that containing S, that is,

$$\langle S \rangle := \bigcap_{i \in I} G_i, \ G_i \leq G, S \subseteq G_i \text{ for all } i \in I.$$

Note that

$$S = \emptyset \Rightarrow \langle \emptyset \rangle = \{e\}$$

$$S = \emptyset \Rightarrow \langle S \rangle = \{a_1^{n_1} a_2^{n_2} \dots a_r^{n_r} \mid a_i \in S, n_i \in \mathbb{Z}, r \in \mathbb{N}, \}$$

where a_i may occur several times.

If G = ⟨a⟩ ⇒ G is cyclic group
If G = ⟨a₁, a₂, ..., aₙ⟩ ⇒ G is finitely generated group.